首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the mechanical behaviour of lime hemp composites. LHC blocks have been produced by compression in a rigid die at a relatively high compression pressure. This process allows the production of LHC with a high proportion of hemp shiv. New mechanical parameters are proposed to compare experimental results of this study with those found in published literature. This paper shows that a high compaction pressure enhances the compressive strength and can offset a reduction of binder. Consequently, a new formula is proposed to predict the strength of LHC which depends on both the binder content and the compaction state of the shiv particles. The study leads to recommendations for the mix design of such composites.  相似文献   

2.
Tape casting is a powerful method for the manufacture of carbonyl nickel green tape, which is sintered at a given condition and then used as the electrode for molten carbonate fuel cells. In this work, the rheological behaviors of non-aqueous carbonyl nickel slips for tape casting was investigated considering different solvent and binder systems, by controlling the total binder and plasticizer content and the binder to plasticizer ratio. Glycerol trioleate was used as the dispersant and its content in the slip was also optimized. The characteristics of the green tapes obtained in different conditions were studied in terms of densities, tensile strength and microstructure, and related with the rheological properties of the slips.  相似文献   

3.
This paper presents an experimental study on the mechanical properties of concrete added with rice husk ash (RHA) as a supplementary cementitious material. The compressive strength, modulus of elasticity and creep were obtained experimentally from specimens with different RHA contents (0%, 10%, 15% and 20% of binder). The results show that the addition of RHA in concrete can improve both the compressive strength and modulus of elasticity and reduce the creep of concrete. The examination of pore micro-structure of hardened concrete using both the mercury intrusion porosimetry and scanning electron microscope techniques demonstrates that RHA particles can react with calcium hydroxide originated from cement hydration to produce additional C-S-H, which can fill voids and large pores and thus reduces the porosity related to capillary pores and voids. In addition, the release of absorbed water, which is retained in the small pores of RHA particles at early days, can improve cement hydration and thus reduce the porosity related to gel pores.  相似文献   

4.
The starch-hemp composite materials are manufactured from the natural raw materials (water, starch and hemp shives) and a new durable material for construction and building. In this work, experimental investigation was carried out to study the mechanical and acoustical performance of starch-hemp composite materials. The starch-hemp composite materials specimens with five Hemp/Starch ratios (H/S = 6, 8, 10, 12 and 14), were manufactured by using the optimal binder and two hemp shives (0–15 mm and 0–20 mm). Density of the starch-hemp composite materials varies with the H/S ratio. The dry density for the starch-hemp composite materials is lower, between 163.6 kg/m3 and 169.1 kg/m3 in case of the hemp shives 0–15 mm and between 168.1 kg/m3 and 174.3 kg/m3 for the hemp shives 0–20 mm. The relation between stress and strain of the composite materials is not linear. The ultimate compressive stress can reach 0.55 MPa and the compressive strain is up to 30%. The results obtained by test show that the tensile strength depends strongly on the Hemp/Starch ratio and the hemp shives sizes. The variation of elasticity modulus and Poisson's ratio in function of the H/S ratio was also analyzed in this paper. The mechanism of the cracks or failure of the specimens was studied by using ARAMIS optical system. The study on acoustical behavior shows that the starch-hemp composite materials are a good sound absorber material for medium and high frequencies with a value around 0.7. The influence of the H/S ratio on the absorption coefficient is small. The results show that the starch-hemp composite materials have a good mechanical and acoustical performance and can be used as building materials.  相似文献   

5.
Since the mix design of self-consolidating concrete (SCC) differs from that of conventional concrete, mechanical properties of SCC may differ from those of vibrated concrete. An experimental program was performed to evaluate mechanical properties of SCC used for precast, prestressed applications. Sixteen SCC mixtures with a fixed slump flow of 680 ± 20 mm were prepared with different mixture parameters, including binder content and binder type, w/cm, dosage of viscosity-modifying admixture, and sand-to-total aggregate volume ratio. Two high-performance concrete mixtures that represent typically concrete used for precast, prestressed applications were investigated for the control mixtures. They were proportioned with 0.34 and 0.38 w/cm and had slump values of 150 mm. Mechanical properties of SCC were compared to code provisions to estimate compressive strength, elastic modulus, and flexural strength. The modified ACI 209-90 and CEB-FIP MC90 codes are found to provide good estimate for compressive strength prediction. The AASHTO 2007 model can provide good prediction of the elastic modulus and flexural strength of SCC.  相似文献   

6.
The objective of this study is the formulation of a natural polysaccharidic binder for the conception of an insulating bio-based composite made with sunflower stalk particles. The formulation was performed using chitosan cross-linked with Genipin and mixed with alginate, guar gum and starch. A fractional factorial experimental design within 32 essays was established to find the formulation leading to composites with the best combination between good mechanical properties and limited amount of chitosan in the binder. Composites with a thermal conductivity (κ) of 0.07 W m−1 K−1 and a maximum tensile stress (σmax) of 0.2 MPa were obtained with a total binder ratio of 5.5% (w/w). The results of this study show that the insulating bio-based composites evaluated have competitive mechanical and thermal performances compared with other eco-friendly insulating materials available on the market.  相似文献   

7.
The effect of the composition of high strength concretes with low water to binder ratio and silica fume on the development of splitting tensile strength was studied. A statistical approach was employed to develop formulation which could adequately describe the relations between splitting tensile strength and the concrete composition, when cured in two different regimes: water curing at 20°C and sealed curing at 30°C. Autogenous shrinkage was induced in the second type of curing but was largely eliminated in the first one. The relations were presented as nomograms which could be used as a basis for mix design. The correlation between tensile splitting strength and compressive strength could not be described in terms of a simple linear relation with a characteristic constant. For the range of variables studied, the ratio between tensile and compressive strength varied over a large range of 0.08 to 0.12. As a result, the relations developed here for tensile strength are quite different in nature than those for compressive strength in a previous study. Analysis of the data suggest that tensile strength is sensitive to effects which induce autogenous shrinkage to a much greater extent than compressive strength. It is proposed that this may be the main reason for the different trends observed for the relations between the composition of the low water/binder ratio concretes and their compressive and tensile strength.  相似文献   

8.
A coupled (two-step) numerical procedure to characterize the mechanical behaviour of Rubberized Concrete (RuC) is proposed and validated in this paper. In particular, the splitting tensile strength test is described in detail. In the first step, MATLAB Image Processing is used to obtain the model geometry and the RuC heterogeneous configuration (distribution of rubber particles within the concrete matrix). In the second step, the Extended Finite Element Method (XFEM) included in ABAQUS software is used to simulate the inelastic behaviour of the concrete matrix and allow the nucleation and development of cracks, as well as the damage evolution and ultimate strength of the RuC specimen cross-section. Additionally, a set of experimental results on mechanical behaviour of RuC is presented. This shows that RuC has both lower strength and stiffness but higher ductility (less brittle behaviour) than normal concrete (NC). Finally, a good agreement between the two-step procedure results and the experimental results (in terms of indirect tensile strength, stiffness and failure mode) is observed.  相似文献   

9.
This work presents an experimental study of thermal conductivity, compressive strength, first crack strength and ductility indices of recycled PET fiber-reinforced concrete (RPETFRC). We examine PET filaments industrially extruded from recycled PET bottle flakes with different mechanical properties and profiles. On considering a volumetric fiber dosage at 1%, we observe marked improvements in thermal resistance, mechanical strengths and ductility of RPETFRC, as compared to plain concrete. A comparative study with earlier literature results indicates that RPETFRC is also highly competitive over polypropylene-fiber-reinforced concrete in terms of compressive strength and fracture toughness.  相似文献   

10.
Natural fibre composites were produced from maleated polyethylene (MAPE) and hemp fibres, while impact modification was performed via ground tire rubber (GTR) addition. Incorporation of hemp fibre increased significantly the tensile (strength and modulus) and flexural properties of the MAPE matrix. Impact strength however, decreased with increasing hemp content, but GTR addition led to a noticeable increase in impact strength (up to 50% at 10% GTR). Increase in hemp content produced also higher water uptake and longer saturation time. After ageing in water, the mechanical properties and thermal stability were unchanged for samples up to 30% hemp, but samples at higher concentrations showed some degradation.  相似文献   

11.
This study reports the testing of 12 alkali-activated (AA) mortars and six AA concretes using lightweight aggregates. These tests aimed to explore the significance and limitations of the development of lightweight AA mortar and concrete. Ground granulated blast-furnace slag, which was used as source material, was activated by sodium silicate powder. The main parameter investigated was the replacement level of lightweight fine aggregates to the natural sand. The effect of the water–binder ratio on the compressive strength development was also studied in AA mortars. Initial flow and development of compressive strength were recorded for the lightweight AA mortar. For the lightweight AA concrete, many factors were measured: the variation of slump with elapsed time, the development of compressive strength, splitting tensile strength, moduli of rupture and elasticity, stress–strain relationship, bond strength and shrinkage strain. Test results showed that the compressive strength of AA mortar decreased linearly with the increase of the replacement level of lightweight fine aggregates, regardless of the water–binder ratio. The compressive strength of AA concrete, however, sharply decreased when the replacement level of lightweight fine aggregates exceeded 30%. In particular, the increase in the discontinuous grading of lightweight aggregate resulted in the deterioration of the mechanical properties of AA concrete.  相似文献   

12.
The objective of this work was to investigate the use of hydrothermal pre-treatment and enzymatic retting to remove non-cellulosic compounds and thus improve the mechanical properties of hemp fibre/epoxy composites. Hydrothermal pre-treatment at 100 kPa and 121 °C combined with enzymatic retting produced fibres with the highest ultimate tensile strength (UTS) of 780 MPa. Compared to untreated fibres, this combined treatment exhibited a positive effect on the mechanical properties of hemp fibre/epoxy composites, resulting in high quality composites with low porosity factor (αpf) of 0.08. Traditional field retting produced composites with the poorest mechanical properties and the highest αpf of 0.16. Hydrothermal pretreatment at 100 kPa and subsequent enzymatic retting resulted in hemp fibre composites with the highest UTS of 325 MPa, and stiffness of 38 GPa with 50% fibre volume content, which was 31% and 41% higher, respectively, compared to field retted fibres.  相似文献   

13.
Several material properties and mix design parameters affect the performance of self-consolidating concrete (SCC) and need to be taken into consideration to enhance the fresh and hardened properties of the concrete. A factorial design was conducted to model the effect of mixture parameters and material properties on workability, mechanical properties, and visco-elastic properties of SCC used for the construction of precast/prestressed structural elements. The modeled mixture parameters included the binder content, binder type, water-to-cementitious materials ratio, sand-to-total aggregate ratio (S/A), and dosage of thickening-type viscosity-modifying admixture. In total, 16 SCC mixtures were investigated to establish a factorial design with five main factors. Three replicate SCC mixtures were prepared to estimate the degree of the experimental error for the modeled responses. The mixtures were evaluated to determine several key responses that affect the performance of precast, prestressed concrete, including the filling ability, passing ability, filling capacity, stability, compressive strength, modulus of elasticity, flexural strength, autogenous shrinkage, drying shrinkage, and creep. The derived statistical models enable to quantify the level of significance of each of the five investigated parameters on fresh and hardened properties of SCC, which can simplify the test protocol needed to optimize SCC. Based on the results derived from the factorial design, recommendations for the proportioning of SCC in terms of workability, mechanical properties, and visco-elastic properties are given.  相似文献   

14.
In the present work, the effect of lignin particles and wood flour weight fractions incorporated on friability and thermal stability of a phenolic foam was determined. In addition, the effect of hygrothermal aging on compressive mechanical properties and cell size of the materials was studied. The incorporation of lignin particles decreased friability of the phenolic foam; whereas, wood flour increased it. The influence of both reinforcements on thermal stability of the material was very low. Although the reduction in mechanical properties of reinforced foams was higher than for the unreinforced material after hygrothermal aging, modulus and strength of the reinforced foams were still superior to those of the unreinforced material. Hygrothermal aging did not influence cell size of the foams studied. The material which exhibits the best combination of features was 8.5 wt.% lignin particle-reinforced phenolic foam.  相似文献   

15.
The use of industrial by-products in concrete would increase the sustainability of the construction industry. In this study, the potential use of scrap crumb rubber as fine aggregate in lightweight (Lytag) concrete was experimentally investigated. The effects of replacing natural sand by crumb rubber particles on the physico-mechanical, micro-structural and dynamic properties of the Lytag concrete were evaluated. When the rubber was introduced, the reduction in compressive strength of the Lytag concrete was experienced due to the less than perfect bond between the cement paste and the rubber as confirmed by the micro-structural observation. Additionally, there was flocculation of some of the crumb rubber particles and the packing of the rubber particles contributed to pockets of voids resulted in anisotropy in the concrete. The results also showed that the rubber not only meliorated the resistance of the cementitious Lytag composite to cracking from impact load but overall impact strength was also improved as the rubber particles acted as impedance to crack initiation and propagation.  相似文献   

16.
It has been demonstrated in several past studies that high calcium wood ash (HCWA) can be effectively used in combination with densified silica fume (DSF) as supplementary binder material to enhance the mechanical performance of concrete. The experimental investigation was conducted to study the effect of the inclusion of HCWA and DSF on the durability properties of high strength cement mortar produced. A total of twelve different mix designs of mortar were fabricated with the use of HCWA at various cement replacement levels of 0–20% in combination with 7.5% densified silica fume (DSF) and subjected to various durability tests. The durability assessments performed include tests on water absorption, air permeability, porosity and degree of carbonation. A significantly lower degree of water absorption, porosity and carbonation was observed for cement mortars with HCWA contents of 2–8% used in combination with 7.5% DSF by weight of binder as compared to an equivalent pure cement mortar.  相似文献   

17.
The paper concerns testing and modelling of the mechanical properties required as input to calculation programs made for crack risk estimation of hardening concrete structures. The results from several test series on mechanical properties of young concrete as described in Part I of this paper, are further evaluated. Model parameters for the modified CEB 1990 Model Code-equations, are determined for six concrete mixes, all having a w/b-ratio on 0.40, for compressive strength, tensile strength and E-modulus. To make the models applicable for young concrete, at 0-parameter is introduced to fix the time at which significant mechanical properties are present. A test program to determine the model parameters is proposed, based on the experience that compressive strength tests have the smallest statistical scatter and that they are simplest to carry out.  相似文献   

18.
With high ductility and sufficient durability, fibre reinforced concrete (FRC) is widely used. In this study, the effects of the volume fraction and length of basalt fibre (BF) on the mechanical properties of FRC were analyzed. Coupling with the scanning electron microscope (SEM) and mercury intrusion porosimeter (MIP), the microstructure of BF concrete was studied also. The results show that adding BF significantly improves the tensile strength, flexural strength and toughness index, whereas the compressive strength shows no obvious increase. Furthermore, the length of BF presents an influence on the mechanical properties. Compared with the plain concrete, the compressive, splitting tensile and flexural strength of concrete reinforced with 12 mm BF increase by −0.18–4.68%, 14.08–24.34% and 6.30–9.58% respectively. As the BF length increasing to 22 mm, corresponding strengths increase by 0.55–5.72%, 14.96–25.51% and 7.35–10.37%, separately. A good bond between the BF and the matrix interface is observed in the early age. However, this bond shows degradation to a certain extent at 28 days. Moreover, the MIP results indicate that the concrete containing BF presents higher porosity.  相似文献   

19.
In the present work, Al–nano MgO composites using A356 aluminum alloy and MgO nanoparticles (1.5, 2.5, and 5 vol.%) have been fabricated via stir casting and powder metallurgy (PM) methods. Different processing temperatures of 800, 850, and 950 °C for stir casting and 575, 600, and 625 °C for powder metallurgy were considered. Powder metallurgy samples showed more porosity portions compare to the casting samples which results in higher density values of casting composites (close to the theoretical density) compare to the sintering samples. Introduction of MgO nanoparticles to the Al matrix caused increasing of the hardness values which was more considerable in casting samples. The highest hardness value for casting and sintering samples have been obtained at 850 and 625 °C respectively, in 5 vol.% of MgO. Compressive strength values of casting composites were higher than sintered samples which were majorly due to the more homogeneity of Al matrix, less porosity portions, and better wettability of MgO nanoparticles in casting method. The highest compressive strength values for casting and sintered composites have been obtained at 850 and 625 °C, respectively. Scanning electron microscopy images showed higher porosity portions in sintered composites and more agglomeration and aggregation of MgO nanoparticles in casting samples which was due to the fundamental difference of two methods. Generally, the optimum processing temperatures to achieve better mechanical properties were 625 and 850 °C for powder metallurgy and stir-casting, respectively. Moreover, casting method represented more homogeneous data and higher values of mechanical properties compare to the powder metallurgy method.  相似文献   

20.
The present paper investigates micromechanics of hemp strands. The main objective of the present work has been the determination of the intrinsic strength of hemp strands. Hemp strands have been used as reinforcement of Polypropylene composites. Different percentages of hemp strands and coupling agents (MAPP) have been tested to obtain a map of the mechanical properties of that kind of composites and the effect of the components on the final properties. Mechanical properties of the different specimens have been tested using standard experimental methods and equipment. Micromechanics of the strands have been obtained using Hirsch model, Bowyer–Bader methodology and Kelly-Tyson model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号