首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
In this study, the fresh and hardened properties of self-compacting concrete (SCC) using recycled concrete aggregate as both coarse and fine aggregates were evaluated. Three series of SCC mixtures were prepared with 100% coarse recycled aggregates, and different levels of fine recycled aggregates were used to replace river sand. The cement content was kept constant for all concrete mixtures. The SCC mixtures were prepared with 0, 25, 50, 75 and 100% fine recycled aggregates, the corresponding water-to-binder ratios (W/B) were 0.53 and 0.44 for the SCC mixtures in Series I and II, respectively. The SCC mixtures in Series III were prepared with 100% recycled concrete aggregates (both coarse and fine) but three different W/B ratios of 0.44, 0.40 and 0.35 were used. Different tests covering fresh, hardened and durability properties of these SCC mixtures were executed. The results indicate that the properties of the SCCs made from river sand and crushed fine recycled aggregates showed only slight differences. The feasibility of utilizing fine and coarse recycled aggregates with rejected fly ash and Class F fly ash for self-compacting concrete has been demonstrated.  相似文献   

2.
The impact behaviours of steel tube-confined recycled aggregate concrete (STCRAC) following exposure to elevated temperatures of 20 °C, 200 °C, 500 °C and 700 °C were experimentally investigated using a 100 mm-diameter split Hopkinson pressure bar (SHPB). The recycled coarse aggregate (RCA) replacement ratios were set as 0, 50% and 100%. The effect of RCA replacement ratio and exposure temperature on the impact properties of STCRAC were analysed in terms of failure modes, stress-strain time history curve and dynamic increase factor (DIF). The results show that the fire-damaged STCRAC can maintain its integrity during impact load. However, there were evident degradations in the dynamic behaviour of STCRAC after exposure to high temperatures of 500 °C and 700 °C. The ultimate impact strength, impact secant modulus and residual impact strength of STCRAC obviously decreased because of the damage due to high temperature exposure. But the degradations of both the ultimate impact strength and impact secant modulus of STCRAC under impact loading were less severe than those under quasi-static loading. The remaining strength factor and the DIF tended to increase with the raise of the elevated temperatures. Overall, during the impact loading, the fire-deteriorated STCRAC exhibited excellent impact behaviour.  相似文献   

3.
This study investigated the thermal resistance of lightweight concrete with recycled coal bottom ash and fly ash. Specimens were exposed to temperatures up to 800 °C then cooled to room temperature before conducting experiments. Compressive strength test, FF-RC test, TG analysis, and XRD analysis were performed to analyze the physicochemical effects of coal ashes on the thermal resistance of concrete. Test results indicated that both bottom ash and fly ash were associated with a substantial increase in the residual strength of thermal exposed concretes. The results were attributed to the surface interlocking effect and the smaller amount of SiO2 for bottom ash. For fly ash, the formation of pozzolanic C-S-H gel and tobermorite retained water at high temperatures, and the consumption of Ca(OH)2 lowered stress from rapid recrystallization after exposure to 600 °C. It was concluded that the incorporation of coal ashes allows for lightweight concrete with good thermal resistance.  相似文献   

4.
In this paper, the effects of high temperature exposure of recycled aggregate concretes in terms of residual strengths, capillary water absorption capacity and pore size distribution are discussed. Two mineral admixtures, fly ash (FA) and ground granulated blast furnace (GGBS) were used in the experiment to partially replace ordinary Portland cement for concrete production. The water to cementitious materials ratio was maintained at 0.50 for all the concrete mixes. The replacement levels of natural aggregates by recycled aggregates were at 0%, 50% and 100%. The concretes were exposed separately to 300 °C, 500 °C and 800 °C, and the compressive and splitting tensile strength, capillary water coefficient, porosity and pore size distribution were determined before and after the exposure to the high temperatures. The results show that the concretes made with recycled aggregates suffered less deteriorations in mechanical and durability properties than the concrete made with natural aggregates after the high temperature exposures.  相似文献   

5.
In this study, a CO2 curing process was adopted in order to promote rapid strength development of concrete blocks containing recycled aggregates. The influence of several factors associated with the curing conditions on the curing degree and compressive strength of the concrete blocks were investigated, including curing time, temperature, relative humidity, pressure and post-water curing after the pressurized CO2 curing (PCC) process. In addition a flow-through CO2 curing (FCC) method at ambient pressure was also used. The results of the PCC experiments showed that, considerable curing degree and compressive strength were attained during the first 2 h of CO2 curing, and a prolonged curing time yielded slower gains. The variations of temperature from 20 °C to 80 °C and relative humidity from 50% to 80% had limited impacts on PCC; but the effects of CO2 gas pressure on the curing degree and compressive strength were more pronounced. The post-water curing after pressurized CO2 curing allowed the concrete blocks to attain further strength gain but its effectiveness was inversely proportional to the CO2 curing degree already attained. The FCC experimental results indicated that although a lower curing degree and slower strength development at the early age were observed, after 24 h of curing duration, they were comparable to those obtained by the PCC method. To assess the thermal stability of the concrete blocks, the optimum CO2 curing regime was adopted for preparing the concrete blocks with recycled aggregates, and the CO2 cured specimens exhibited better fire resistance than the water-cured ones at 800 °C.  相似文献   

6.
An accelerated carbonation technique was employed to strengthen the quality of recycled concrete aggregates (RCAs) in this study. The properties of the carbonated RCAs and their influence on the mechanical properties of new concrete were then evaluated. Two types of RCAs, an old type of RCAs sourced from demolished old buildings and a new type of RCAs derived from a designed concrete mixture, were used. The chosen RCAs were firstly carbonated for 24 h in a carbonation chamber with a 100% CO2 concentration at a pressure level of 0.1 Bar and 5.0 Bar, respectively. The experimental results showed that the properties of RCAs were improved after the carbonation treatment. This resulted in performance enhancement of the new concrete prepared with the carbonated RCAs, especially an obvious increase of the mechanical strengths for the concrete prepared with the 100% carbonated new RCAs. Moreover, the replacement percentage of natural aggregates by the carbonated RCAs can be increased to 60% with an insignificant reduction in the mechanical properties of the new concrete.  相似文献   

7.
In this research work, High Performance Concrete (HPC) was produced employing 30% of fly ash and 70% of Portland cement as binder materials. Three types of coarse recycled concrete aggregates (RCA) sourced from medium to high strength concretes were employed as 100% replacement of natural aggregates for recycled aggregate concrete (RAC) production. The specimens of four types of concretes (natural aggregate concrete (NAC) and three RACs) were subjected to initial steam curing besides the conventional curing process. The use of high quality RCA (>100 MPa) in HPC produced RAC with similar or improved pore structures, compressive and splitting tensile strengths, and modulus of elasticity to those of NAC. It was determined that the mechanical and physical behaviour of HPC decreased with the reduction of RCA quality. Nonetheless steam-cured RACs had greater reductions of porosity up to 90 days than NAC, which led to lower capillary pore volume.  相似文献   

8.
Recycled demolished concrete (DC) as recycled aggregate (RA) and recycled aggregate concrete (RAC) is generally suitable for most construction applications. Low-grade applications, including sub-base and roadwork, have been implemented in many countries; however, higher-grade activities are rarely considered. This paper examines relationships among DC characteristics, properties of their RA and strength of their RAC using regression analysis. Ten samples collected from demolition sites are examined. The results show strong correlation among the DC samples, properties of RA and RAC. It should be highlighted that inferior quality of DC will lower the quality of RA and thus their RAC. Prediction of RAC strength is also formulated from the DC characteristics and the RA properties. From that, the RAC performance from DC and RA can be estimated. In addition, RAC design requirements can also be developed at the initial stage of concrete demolition. Recommendations are also given to improve the future concreting practice.  相似文献   

9.
In the last decade the steel fiber reinforced self-compacting concrete (SFRSCC) has been used in several partially and fully structural applications. This study investigates how the inclusion of steel fibers affects the properties of SFRSCC. For this purpose, an extensive experimental program including different cement contents of 400, 450 and 500 kg/m3, two maximum aggregate sizes of 10 and 20 mm along with steel fiber volume fractions of 0%, 0.38%, 0.64% and 1% was conducted. The water/cement ratio was kept constant at 0.45 for all the mixes studied. Mechanical properties were tested for compressive, splitting tensile and flexural strengths and modulus of elasticity. The results showed that mixture characteristics and volume fraction of steel fibers can significantly affect these major properties. Furthermore, this study represents extensive comparisons using database that have been gathered from a wide variety of international sources reported by many researchers and data obtained experimentally, which came up with about some discrepancies in the results.  相似文献   

10.
The fresh behaviour of self-compacting concrete (SCC) at varying temperatures differs from that of normal vibrated concrete. This is because the rheology of SCC depends not only on degree of cement hydration, but also on the adsorption of superplasticizers – mostly polycarboxylate based polymers (PCE) -, which is affected by the time and hydration progress. Due to the variety of PCEs and mixture compositions for SCC a prediction of the rheology at varying temperatures is complicated. The charge densities of PCEs as well as the water to solid ratio in the paste are identified to be the main decisive parameters for robust fresh concrete properties.Rheometric concrete investigations with different SCC mixture compositions and varied anionic charge densities of the PCE were conducted. SCC which is rich in powder components showed robust performance at low temperatures while SCC with low powder content was favourable at high temperatures. High charge density PCE pointed out to be very robust at low temperatures but at high temperatures it significantly reduced the flow retention. Low charge density PCE could not generate self-compacting properties at low temperatures but retained the flow performance over sufficiently long time. Based on considerations about particle interactions and adsorption mechanisms of PCEs, the relevant processes are explained and options for the development of robust mixture compositions for individual temperature ranges are itemised.  相似文献   

11.
The popularity of self-compacting concrete (SCC), as an innovative construction materials in concrete industry, has increased all over the world in recent decades. SCC offers a safer construction process and durable concrete structure due to its typical fresh concrete behavior which is achieved by SCC’s significantly different mixture composition. This modification of mix composition may have significant effect on the hardened mechanical properties of SCC as compared to normal vibrated concrete (NVC). Therefore, it is necessary to know whether the use of all rules and relations that have been formulated for NVC in current design codes based on years of experience are also valid for SCC. Furthermore, this study represents an extensive evaluation and comparison between mechanical properties of SCC using current international codes and prediction equations proposed by other researchers. Thus, in this experimental study, major mechanical properties of SCC are investigated for twelve SCC mixes with wide spectrum of different variables i.e. maximum coarse aggregate size, coarse aggregate volume and aging. In the present study, an extensive body of data reported by many researchers for SCC and NVC has been used to validate the obtained results.  相似文献   

12.
Use of glass powder as concrete SCM or in development of lime–pozzolan binders could provide environmental and economical benefits. In exposure to an alkaline pore solution, glass powder (GP) dissolves and reacts pozzolanically with calcium hydroxide (CH). In this paper, the stoichiometry and products of this reaction are studied using a CH–GP binder system cured at 60 °C. TGA, selective acid dissolution, SEM/EDS, and QXRD methods are used to quantify the stoichiometry, and characterize the reaction products as a function of age. It is determined that approximately equal masses of CH and GP react with each other and with water to produce C–S–H. Both crystalline and amorphous C–S–H are formed, but the crystalline C–S–H is favored at later ages and higher alkalinities. NaOH-activation accelerates the reactions. However when high alkalinity is maintained, GP continues to dissolve after complete consumption of CH, and forms alkali–silicate gels, which could be expansive and deleterious.  相似文献   

13.
This paper presents the fresh, mechanical, and durability performance, of a structural concrete mix classified as C-1, by the Canadian Standards Association (CSA) made with controlled quality Recycled Concrete Aggregate (RCA). Five mixes with water-to-cementing material (w/cm) ratio of 0.40 were produced with various RCA contents and tested against two 0% RCA control mixes made with General Use (GU) cement, and General Use Limestone cement (GUL). The RCA contents in the mixes were 10%, 20%, and 30% by coarse aggregate volume replacement, as well as 10% and 20% fine and coarse (granular) aggregate volume replacement. All evaluated mixes met the specifications from the CSA for fresh, mechanical, and durability properties. The coarse RCA mixes performed better than the granular RCA mixes in terms of flexural and splitting tensile strengths, linear drying shrinkage, water sorptivity, and rapid chloride-ion permeability, where the test results were significantly affected by the ultra fines present in the granular RCA.  相似文献   

14.
Self-compacting concrete (SCC) used in Switzerland contains about 80 l/m3 more volume of paste than conventionally vibrated concrete (CVC). Consequently, there are some systematic differences in the properties of the hardened concrete. Normally, shrinkage of SCC is higher than shrinkage of CVC. Therefore, risk of cracking in case of restrained deformations can be increased for SCC. In this study shrinkage of thirteen different SCC mixtures using volume of paste, water content, type of binder, grain size distribution or content of shrinkage reducing admixture (SRA) as variables was compared with shrinkage of three different CVC mixtures with constant volume of paste but variable w/b. Furthermore, the risk of cracking of the different SCC- and CVC-mixtures in restrained conditions was studied under constant and varying curing conditions. The results show that shrinkage is mainly depending on volume of paste. Due to the higher volume of paste, SCC displayed higher shrinkage than CVC. Adding an SRA was the only measure to reduce shrinkage of SCC to values of CVC. Restrained shrinkage cracking is depending on shrinkage rate, mechanical properties and drying velocity. For slow shrinkage stress development, cracking risk of SCC can be lower compared to CVC despite the higher shrinkage rate.  相似文献   

15.
对36个玄武岩纤维布增强树脂基复合材料(BFRP)约束加固的高温损伤混凝土圆柱体和15个不同高温损伤的对比试件进行了轴压试验。试验表明,BFRP侧向约束能显著改变混凝土圆柱体的破坏形态,提高混凝土圆柱体的轴压强度和变形能力。其中二层BFRP包裹的200℃、400℃、600℃和800℃高温损伤混凝土圆柱体的轴压强度分别提高了56%、82%、234%和250%,轴向变形分别提高了328%、198%、232%和136%。采用典型的纤维增强复合材料约束常温未损伤混凝土轴压强度和变形计算模型预测纤维增强复合材料约束高温损伤混凝土轴压极限强度和极限变形时存在较大的偏差。基于本文试验数据,确定了BFRP约束高温损伤混凝土极限应力和极限应变计算模型中与温度相关的参量,建议了适用于预测纤维增强复合材料约束高温损伤混凝土的极限应力计算模型和极限应变计算模型。  相似文献   

16.
The effects of the use of Class F fly ash as a cement addition on the hardened properties of recycled aggregate concrete were determined. In this study, four series of concrete mixtures were prepared with water-to-cement (w/c) ratios of 0.55, 0.50, 0.45 and 0.40. The recycled aggregate was used as 0%, 20%, 50% and 100% replacements of coarse natural aggregate. Furthermore, fly ash was employed as 0% and 25% addition of cement. Although the use of recycled aggregate had a negative effect on the mechanical properties of concrete, it was found that the addition of fly ash was able to mitigate this detrimental effect. Also, the addition of fly ash reduced the drying shrinkage and enhanced the resistance to chloride ion penetration of concrete prepared with recycled aggregate. Moreover, it was found that the drying shrinkage and chloride ion penetration decreased as the compressive strength increased. Compared with the results of our previous study, the present study has quantified the advantages of using fly ash as an additional cementitious material in recycled aggregate concrete over the use of fly use as a replacement of cement.  相似文献   

17.
研究了掺纳米SiO2的钢纤维混凝土(NSFC)、钢纤维混凝土(SFRC)和普通混凝土(NC)三种材料在不同加热温度后的抗压、劈裂和抗折强度等力学性能,对不同温度热处理后的微观结构进行了SEM分析,对钢纤维与过渡区界面的相结构进行了XRD分析.结果表明:在测试温度范围内,NSFC的抗压、劈裂和抗折强度均高于SFRC和NC的强度,且在400℃时达到最大值.在常温下,NSFC的抗压、劈裂和抗折强度较NC分别提高27.01%、63.28%和54.12%,400℃高温热处理后比NC分别高35.09%、84.62%和87.23%; SEM分析表明,在钢纤维与过渡区的界面处,致密度提高,显微硬度提高.由于固相反应,使界面区结构发生变化,在钢纤维表层形成扩散渗透层(白亮层),即化合物层,呈锯齿状,XRD分析证明,白亮层主要由FeSi2和复杂的水化硅酸钙组成,从而增强了钢纤维与基体的粘结力,提高了混凝土的高温力学性能.  相似文献   

18.
This paper presents an experimental study about the effects of elevated temperatures on the residual mechanical properties of concrete incorporating selected plastic waste aggregates (PWAs). Six different concrete mixes were prepared: a reference concrete (RC) made with natural aggregates (NAs) and five concrete mixes with replacement ratios of 7.5% and 15% of natural aggregate by three types of polyethylene terephthalate (PET) plastic waste aggregate (CPWA). Specimens were exposed to temperatures of 600 °C and 800 °C for a period of 1 h, after being heated in accordance with the ISO 834 time–temperature curve. After cooling down to ambient temperature, the following properties were evaluated and compared with reference values obtained prior to fire exposure: (i) compressive and (ii) splitting tensile strengths, (iii) elastic modulus, (iv) ultrasonic pulse velocity (UPV), (v) surface hardness, and (vi) water absorption by immersion. For the replacement ratios used in these experiments, the maximum temperatures reached in CPWA were higher than those measured in RC, due to the higher porosity increase with temperature of the former type of concrete that facilitated the propagation of heat inside concrete, and the exothermic thermal decomposition of plastic aggregates that generated additional heat. After exposure to elevated temperatures, the degradation of compressive strength and elastic modulus of CPWA was higher than that of RC, particularly for the highest replacement ratio, as a consequence of the higher porosity increase experienced by CPWA. The reduction of residual splitting tensile strength of CPWA was found to be similar to that of RC, possibly because the incorporation of PWA led to lower internal stresses due to thermal gradients and allowed an easier dispersion of gases confined in pores, thus reducing crack development in the matrix. The magnitude of the degradation of concrete’s residual mechanical properties was seen to depend on the type of PWAs and the replacement ratio. The residual compressive strength of CPWA proved to be strongly correlated with both UPV and water absorption by immersion, but its correlation with surface hardness was less significant.  相似文献   

19.
Self-compacting concrete (SCC) has many advantages compared to vibrated concrete. A disadvantage is the lower robustness of fresh SCC. SCC is more sensitive to small changes in the mix design, material properties, and the applied production methods. In an experimental program, the influence of important mix design parameters on the robustness of SCC was studied. First, the influence of the paste volume and the water-to-powder volumetric ratio was investigated. Depending on the mechanisms providing stability in the mixture, different levels of impact were observed. When the yield stress is the main factor providing stability in the mixture, a change in the water content will mainly affect the yield stress, making the stability of the yield stress the most important factor determining the robustness of the mixture and can be improved by lowering the paste volume. Analogue, the sensitivity of the plastic viscosity is determining the robustness of mixtures in which mainly the plastic viscosity is providing stability. The robustness of such a mixture can be improved by increasing the water-to-powder volumetric ratio. The influence of two types of viscosity modifying agents (VMA's) on the robustness of fresh SCC was examined in a second stage. The two used VMA's (diutan gum and attapulgite clay) were especially effective in SCC mixtures having a high yield stress and a low plastic viscosity. In mixtures having a low yield stress and a high plastic viscosity, the inclusion of a VMA in the mix design resulted in a decrease of the robustness.  相似文献   

20.
This paper presents the results of an experimental investigation carried out to study the effect of granulated blast furnace slag and two types of superplasticizers on the properties of self-compacting concrete (SCC). In control SCC, cement was replaced with 10%, 15%, 20%, and 25% of blast furnace slag. Two types of superplasticizers: polycarboxylate based superplasticizer and naphthalene sulphonate based superplasticizers were used. Tests were conducted for slump flow, the modified slump test, V-Funnel, J-Ring, U-Box, and compressive strength. The results showed that polycarboxylate based superplasticizer concrete mixes give more workability and higher compressive strength, at all ages, than those with naphthalene sulphonate based superplasticizer. Inclusion of blast furnace slag by substitution to cement was found to be very beneficial to fresh self-compacting concrete. An improvement of workability was observed up to 20% of slag content with an optimum content of 15%. Workability retention of about 45 min with 15% and 20% of slag content was obtained using a polycarboxylate based superplasticizer; compressive strength decreased with the increase in slag content, as occurs for vibrated concrete, although at later ages the differences were small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号