首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different microstructures were generated in the Ti–45Al–4.6Nb–0.2B–0.2C and Ti–45Al–1Cr alloys (at.%) by heat treatment. The microstructures were investigated using nanoindentation and atomic force microscopy which was compared with transmission electron microscopy. Topographic contrast is usually used for phase identification in the atomic force microscope. However, it was found that the topographic order of the phases changes with different microstructures and specimen preparations. Nanoindentation measurements provided local hardness values not obtainable by other methods and enabled clear distinction of the phases. The hardness values can give information on surrounding microstructure and solid solution hardening. The mean lamellar spacing of the colonies was measured using both atomic force microscopy and transmission electron microscopy. Atomic force microscopy was found to be suitable to determine the spacing between α2/γ-interfaces offering the advantages of easier sample preparation and fewer specimens compared to evaluation by TEM analysis.  相似文献   

2.
Graphite surfaces exposed to the deuterium plasma in the TEXTOR tokamak were characterized in detail by means of scanning probe microscopy, ion beam analysis and colorimetry methods. The aim is to study the composition and structure of thin layer deposits formed on surfaces subjected to the tokamak plasma. The surface roughness was measured and parametrized in terms of fractal dimension and scaling constant. Several different methods for the fractal analysis of plasma-exposed surfaces have been critically evaluated. The main emphasis of this paper is on the correlation between surface roughness (fractal parameters), the amount of deposited atoms and the layer thickness.  相似文献   

3.
陈旖旎  白文坤  胡兵 《声学技术》2014,33(6):508-511
原子力声显微镜结合了超声检测技术的三维成像能力与原子力显微镜的纳米尺度成像的近场显微技术。它在商用的原子力显微镜设备的基础上加以压电超声传感器产生声激励,并使用锁相放大器对数据进行收集分析,既可得到三维的纳米级的清晰形貌图,又能通过建模分析样品表面的接触刚度及样品的弹性模量。目前,原子力显微镜被广泛应用于材料领域,用于检测样品的机械性能,比如样品的接触刚度、薄膜高分子材料的弹性模量,同时还运用于医学生物领域,用于观察细胞的超微结构及其表面和亚表面的弹性模量等。  相似文献   

4.
Triblock copolymers composed of polyethylene oxide (PEO) and polypropylene oxide (PPO) are used in various fields as nonionic surfactants. In this study, we measured interaction forces between untreated hydrophilic silica surfaces in solutions with two typical triblock copolymers, Pluronic P123 (PEO20PPO70PEO20) and F127 (PEO99PPO65PEO99), in the presence of 1 mM and 500 mM NaCl using atomic force microscopy (AFM). In solutions at the copolymer concentration of 1 µM, which is below the critical micelle concentration (CMC), the measured interaction forces were monotonically repulsive in the presence of 1 mM NaCl, which suggested the brush-like conformation of copolymers on the surfaces. When the concentration of NaCl was increased to 500 mM, interaction forces became attractive, which indicated the bridging of adsorbed polymers onto surfaces, the strength of which varied depending on the affinity and adsorption density of copolymers. The interactions at the copolymer concentration of 1 mM, which were above the CMC of both copolymers, were steric repulsions between adsorbed micelles on the surfaces with 1 mM of NaCl. For 500 mM of NaCl, an attractive jump after a steric repulsion was observed only in the force curve for P123, which inferred that the displacement of micelles from the surfaces was presumably due to a decrease in the strength of adsorption caused by the dehydration of EO groups. These results indicated that the length of the EO group considerably affected the interactions.  相似文献   

5.
6.
P. Knotek  L. Tichý 《Thin solid films》2009,517(5):1837-1840
Amorphous Ge27As13S60, Ge14As27S59 and Ge16As26S58 thin films were prepared by thermal evaporation. Well annealed films were photodarkened by the photons with energy little exceeding the band gap energy. Using Atomic Force Microscopy we observed significant photoexpansion of studied films. Atomic Force Acoustic Microscopy revealed domains like structure of the surface and near surface parts of the samples which one was found to be more disintegrated after illumination.  相似文献   

7.
Ability to determine local electric surface properties with a high resolution is a key issue in many modern industrial applications. In this article, authors will describe low-cost and reliable methods for investigations of electrical surface properties with a nanoscale resolution using a homebuilt modular tunneling/atomic force microscope with a quartz tuning fork as a probe. We will present the architecture of the designed system and the calibration method of the applied sensor. In our work, the usage of the tunneling atomic force microscope in the high-resolution investigations of the surface topography and identification of local spots where the tunneling current is observed will be demonstrated. We will also present current-voltage (I-V) spectroscopy performed on a gold thin film sputtered on silicon substrate and a highly oriented pyrolitic graphite (HOPG) surface, which we obtained in air ambient and at room temperature.  相似文献   

8.
Here we present a scanning probe microscopy method that allows for the identification of regions of different polarity (i.e. hydrophilicity) in thin organic films. This technique is based on the analysis of the difference between phase images generated at different applied bias voltages in tapping-mode atomic force microscopy. We show that, without any chemical modification of the microscope tip, it is possible to investigate surface properties of complex macromolecular layers, yielding new insight into the functional properties of the photosynthetic electron transport macromolecular complex, Photosystem I.  相似文献   

9.
A study of the particles precipitated during heat treating a Type 6061 wrought aluminum alloy was carried out by means of atomic force microscopy and scanning electron microscopy (SEM). The specimens were cut from hot-extruded bars and were heat-treated to peak hardness and overaged stages to obtain precipitates of different sizes. The samples were prepared by standard metallographic techniques before being examined with either type of microscope. Observations with the atomic force microscope (AFM) were made in the topographic and lateral force modes, as each method yields different information. The former mode is issued to identify the particles and measure their size and shape, whereas the latter allows for data related to superficial characteristics. It is concluded that both types of microscopic examinations complement each other and that they can be used in conjunction to obtain a deeper understanding of precipitation behaviour and kinetics.  相似文献   

10.
11.
The atomic force microscope has become an established research tool for imaging microorganisms with unprecedented resolution.However,its use in microbiology has been limited by the difficulty of proper bacterial immobilization.Here,we have developed a microfluidic device that solves the issue of bacterial immobilization for atomic force microscopy under physiological conditions.Our device is able to rapidly immobilize bacteria in well-defined positions and subsequently release the cells for quick sample exchange.The developed device also allows simultaneous fluorescence analysis to assess the bacterial viability during atomic force microscope imaging.We demonstrated the potential of our approach for the immobilization of rod-shaped Escherichia coli and Bacillus subtilis.Using our device,we observed buffer-dependent morphological changes of the bacterial envelope mediated by the antimicrobial peptide CM15.Our approach to bacterial immobilization makes sample preparation much simpler and more reliable,thereby accelerating atomic force microscopy studies at the single-cell level.  相似文献   

12.
We have studied the nucleation and growth of Ge microcrystallities on Si(100) or evaporated Cr substrates from an rf glow discharge decomposition of GeH4 highly-diluted with H2, where the crystallinity, the surface microroughness and the local electric transport of the films have been measured as a function of the film thickness. For the film growth thicker than ∼65 nm, Raman scattering spectra show that the evolution of the microcrystalline phase tends to be saturated. In the thickness range of 7-65 nm, the nucleation and/or microcrystalline grain formation with progressive film growth and corresponding significant difference in the electrical conductivity in the direction of the film thickness between the grains and their boundaries have been demonstrated from topographic and current images taken simultaneously by an atomic force microscope with a conducting probe.  相似文献   

13.
Thin blend polymer films made of poly(3-hexylthiophene-2,5-diyl) (electron donor) and fullerene derivatives as electron acceptors ([6,6]-thienylC61 butyric acid methyl ester and [6,6]-thienylC71 butyric acid methyl ester) are prepared by the spin-coating technique on indium tin oxide covered glass substrates. Time-resolved photo-induced changes of surface potentials are detected by Kelvin force microscopy (KFM). Changes of surface potentials by 10-150 mV reveal different quality and kinetics of charge generation in the two blends in short (minutes) and long (hours) time periods. This is attributed to a combination of electron accumulation, trapping, and organic material degradation under ambient conditions. As KFM characterizes the blend films directly without metal contact layer, it reveals differences in the opto-electronic behavior of the blends, which are not detected by common photovoltaic cell characterization.  相似文献   

14.
P. Knotek  J. Tasseva  M. Kincl 《Thin solid films》2009,517(20):5943-3777
Doping of AsSSe amorphous films by silver photo-dissolution leads to a decrease of the optical gap and to an increase of the refractive index in forming AgAsSSe films. The difference of the optical gap and refractive index between undoped and doped films has been found in case of Ag15As26S29Se30 film up to 0.37 eV and 0.26, respectively. Transreflectance in far infrared spectral region indicates formation of AgAsS2 and AgAsSe2 entities in Ag15As26S29Se30 film. Scanning probe microscopy, namely atomic force microscopy, atomic force acoustic microscopy (AFAM) and Kelvin probe force microscopy (KPFM) was used for studying AgAsSSe films. It was found that silver growth is rather three dimensional and it is reminiscent of the Stranski-Krastanov growth mode. Observed silver protuberances represent silver reservoirs responsible for a local increase of silver content. Hence, the silver growth mode enhances formation of nano/meso inhomogeneities of the surface and near surface density/stiffness, seen in AFAM, and in the surface electric potential, seen in KPFM.  相似文献   

15.
Silicon carbide alloys are widely used in high-tech applications due to their interesting combination of chemical, mechanical and electronic properties. Growing thin films of this material in a simple and controlled way is a hot topic in modern material's science. In particular, the possibility to tailor the film properties just by tuning the deposition temperature would be an important progress. In the present work amorphous silicon-carbon alloys thin films have been deposited by electron beam sublimation of a poly-crystalline silicon carbide target in vacuum environment. The deposition temperature was varied from Room Temperature to about 1300 K. The resulting films were analyzed by means of Ultra High Vacuum-Atomic Force Microscopy (UHV-AFM) down to even atomic resolution. The observed features agree with literature data, e.g. interatomic bond lengths, as achieved by others methods, and the structural arrangements of silicon and carbon atoms as concluded from IR and Raman spectroscopy measurements carried out on the same samples. The results not only allow a correlation between film properties and deposition temperature but also support the notion of the UHV-AFM images of the amorphous surfaces being atomically resolved.  相似文献   

16.
17.
In situ tensile testing has been performed on thin gold film, 320 nm thick, deposited on polyimide substrates. During the tensile testing, strain/stress measurements have been carried out by X-ray diffraction using the d-sin2ψ method. The X-ray stress analysis suggests crack formation in the films for stresses greater than 670 MPa. The surface of the deformed specimen observed by atomic force microscopy (AFM) exhibits both cracks and two types of straight-sided buckling patterns lying perpendicular to the tensile axis. These buckling patterns can have a symmetrical or asymmetrical shape. The evolution of these two kinds of buckling structures under tensile stress has been observed in situ by AFM and compared to X-ray stress data. The results indicate that symmetrical straight-sided buckling patterns are induced by the compressive stress during unloading, whereas the asymmetrical result from the delamination of the film during the tensile deformation.  相似文献   

18.
Atomic force microscope (AFM), lateral force microscope and AFM-based scratch and wear testing techniques were used to evaluate and compare the surface roughness, tribological and mechanical properties of thin (2.7-43 nm) tetrahedral amorphous carbon coatings prepared by pulsed cathodic arc discharge. It was found that surface roughness of ultrathin (2-8 nm) coatings was mainly determined by the roughness of the Si substrate and their average density strongly depended on their thickness. Poor friction, mechanical properties of thinner (2.7-15 nm) coatings can be associated with their low average density. The dense coatings (>15 nm) had lower friction coefficient, better scratch and wear resistance properties that were independent of their thickness. It appears that the over 15-nm coatings studied are feasible for some wear-resistant and tribological applications.  相似文献   

19.
Abstract

Atomic force microscopy (AFM) is a universal imaging technique, while impedance spectroscopy is a fundamental method of determining the electrical properties of materials. It is useful to combine those techniques to obtain the spatial distribution of an impedance vector. This paper proposes a new combining approach utilizing multifrequency scanning and simultaneous AFM scanning of an investigated surface.  相似文献   

20.
Copper tetra-tert-butyl Phthalocyanine (CuTTBPc) was vacuum deposited onto substrates of hydrophilic glass, hydrophobic silanized-glass, and one layer CuTTBPc LB film. The effects of substrates on the growth behavior and film characteristics of CuTTBPc were studied by atomic force microscopy as well as XRD and dynamic contact angle analyzer. The results show that, in the early growth stage, the island density and coverage ratio of CuTTBPc are small on hydrophilic glass surface. This result is caused from the weak interaction of CuTTBPc molecules to the glass which leads to a small nucleation rate and rougher morphology in the early growth stage. On the contrary, the nucleation rate of CuTTBPc on the silanized-surface is high and thus a much smoother film comprises densely distributed fine-grain clusters was observed. This fact indicates the higher adhesive force of CuTTBPc molecules to the silanized-surface. On the LB film, the CuTTBPc molecules are arranged in aggregative domains which are separately distributed on the glass surface. These domains act as active sites for the nucleation and growth of the later deposition process and thus, high density clusters were found in the early growth stage. The XRD results demonstrate that the film grown on glass has higher degree of crystalline structure than the others which is resulted from the distinction of the initial growth stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号