共查询到20条相似文献,搜索用时 0 毫秒
1.
Kent A. Spackman 《Computer methods and programs in biomedicine》1985,21(3):221-226
A program has been developed which derives classification rules from empirical observations and expresses these rules in a knowledge representation format called 'counting criteria'. Decision rules derived in this format are often more comprehensible than rules derived by existing machine learning programs such as AQ11. Use of the program is illustrated by the inference of discrimination criteria for certain types of bacteria based upon their biochemical characteristics. The program may be useful for the conceptual analysis of data and for the automatic generation of prototype knowledge bases for expert systems. 相似文献
2.
Despite recent successes and advancements in artificial intelligence and machine learning, this domain remains under continuous
challenge and guidance from phenomena and processes observed in natural world. Humans remain unsurpassed in their efficiency
of dealing and learning from uncertain information coming in a variety of forms, whereas more and more robust learning and
optimisation algorithms have their analytical engine built on the basis of some nature-inspired phenomena. Excellence of neural
networks and kernel-based learning methods, an emergence of particle-, swarms-, and social behaviour-based optimisation methods
are just few of many facts indicating a trend towards greater exploitation of nature inspired models and systems. This work
intends to demonstrate how a simple concept of a physical field can be adopted to build a complete framework for supervised
and unsupervised learning methodology. An inspiration for artificial learning has been found in the mechanics of physical
fields found on both micro and macro scales. Exploiting the analogies between data and charged particles subjected to gravity,
electrostatic and gas particle fields, a family of new algorithms has been developed and applied to classification, clustering
and data condensation while properties of the field were further used in a unique visualisation of classification and classifier
fusion models. The paper covers extensive pictorial examples and visual interpretations of the presented techniques along
with some comparative testing over well-known real and artificial datasets.
相似文献
Bogdan GabrysEmail: |
3.
The performance of eight machine learning classifiers were compared with three aphasia related classification problems. The first problem contained naming data of aphasic and non-aphasic speakers tested with the Philadelphia Naming Test. The second problem included the naming data of Alzheimer and vascular disease patients tested with Finnish version of the Boston Naming Test. The third problem included aphasia test data of patients suffering from four different aphasic syndromes tested with the Aachen Aphasia Test. The first two data sets were small. Therefore, the data used in the tests were artificially generated from the original confrontation naming data of 23 and 22 subjects, respectively. The third set contained aphasia test data of 146 aphasic speakers and was used as such in the experiments. With the first and the third data set the classifiers could successfully be used for the task, while the results with the second data set were less encouraging. However, based on the results, no single classifier performed exceptionally well with all data sets, suggesting that the selection of the classifier used for classification of aphasic data should be based on the experiments performed with the data set at hand. 相似文献
4.
Matjaž Kukar 《Knowledge and Information Systems》2006,9(3):364-384
Although in the past machine learning algorithms have been successfully used in many problems, their serious practical use
is affected by the fact that often they cannot produce reliable and unbiased assessments of their predictions' quality. In
last few years, several approaches for estimating reliability or confidence of individual classifiers have emerged, many of
them building upon the algorithmic theory of randomness, such as (historically ordered) transduction-based confidence estimation,
typicalness-based confidence estimation, and transductive reliability estimation. Unfortunately, they all have weaknesses:
either they are tightly bound with particular learning algorithms, or the interpretation of reliability estimations is not
always consistent with statistical confidence levels. In the paper we describe typicalness and transductive reliability estimation
frameworks and propose a joint approach that compensates the above-mentioned weaknesses by integrating typicalness-based confidence
estimation and transductive reliability estimation into a joint confidence machine. The resulting confidence machine produces
confidence values in the statistical sense. We perform series of tests with several different machine learning algorithms
in several problem domains. We compare our results with that of a proprietary method as well as with kernel density estimation.
We show that the proposed method performs as well as proprietary methods and significantly outperforms density estimation
methods.
Matjaž Kukar is currently Assistant Professor in the Faculty of Computer and Information Science at University of Ljubljana. His research
interests include machine learning, data mining and intelligent data analysis, ROC analysis, cost-sensitive learning, reliability
estimation, and latent structure analysis, as well as applications of data mining in medical and business problems. 相似文献
5.
Alok R. Chaturvedi George K. Hutchinson Derek L. Nazareth 《Journal of Intelligent Manufacturing》1992,3(1):43-57
This paper describes a synergistic approach that is applicable to a wide variety of system control problems. The approach utilizes a machine learning technique, goal-directed conceptual aggregation (GDCA), to facilitate dynamic decision-making. The application domain employed is Flexible Manufacturing System (FMS) scheduling and control. Simulation is used for the dual purpose of providing a realistic depiction of FMSs, and serves as an engine for demonstrating the viability of a synergistic system involving incremental learning. The paper briefly describes prior approaches to FMS scheduling and control, and machine learning. It outlines the GDCA approach, provides a generalized architecture for dynamic control problems, and describes the implementation of the system as applied to FMS scheduling and control. The paper concludes with a discussion of the general applicability of this approach. 相似文献
6.
The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory. 相似文献
7.
《Expert systems with applications》2014,41(9):4224-4234
Incremental learning techniques have been used extensively to address the data stream classification problem. The most important issue is to maintain a balance between accuracy and efficiency, i.e., the algorithm should provide good classification performance with a reasonable time response. This work introduces a new technique, named Similarity-based Data Stream Classifier (SimC), which achieves good performance by introducing a novel insertion/removal policy that adapts quickly to the data tendency and maintains a representative, small set of examples and estimators that guarantees good classification rates. The methodology is also able to detect novel classes/labels, during the running phase, and to remove useless ones that do not add any value to the classification process. Statistical tests were used to evaluate the model performance, from two points of view: efficacy (classification rate) and efficiency (online response time). Five well-known techniques and sixteen data streams were compared, using the Friedman’s test. Also, to find out which schemes were significantly different, the Nemenyi’s, Holm’s and Shaffer’s tests were considered. The results show that SimC is very competitive in terms of (absolute and streaming) accuracy, and classification/updating time, in comparison to several of the most popular methods in the literature. 相似文献
8.
Instance selection aims at filtering out noisy data (or outliers) from a given training set, which not only reduces the need for storage space, but can also ensure that the classifier trained by the reduced set provides similar or better performance than the baseline classifier trained by the original set. However, since there are numerous instance selection algorithms, there is no concrete winner that is the best for various problem domain datasets. In other words, the instance selection performance is algorithm and dataset dependent. One main reason for this is because it is very hard to define what the outliers are over different datasets. It should be noted that, using a specific instance selection algorithm, over-selection may occur by filtering out too many ‘good’ data samples, which leads to the classifier providing worse performance than the baseline. In this paper, we introduce a dual classification (DuC) approach, which aims to deal with the potential drawback of over-selection. Specifically, performing instance selection over a given training set, two classifiers are trained using both a ‘good’ and ‘noisy’ sets respectively identified by the instance selection algorithm. Then, a test sample is used to compare the similarities between the data in the good and noisy sets. This comparison guides the input of the test sample to one of the two classifiers. The experiments are conducted using 50 small scale and 4 large scale datasets and the results demonstrate the superior performance of the proposed DuC approach over the baseline instance selection approach. 相似文献
9.
Alexandre Rafael Lenz Aurora Pozo Silvia Regina Vergilio 《Engineering Applications of Artificial Intelligence》2013,26(5-6):1631-1640
Software testing techniques and criteria are considered complementary since they can reveal different kinds of faults and test distinct aspects of the program. The functional criteria, such as Category Partition, are difficult to be automated and are usually manually applied. Structural and fault-based criteria generally provide measures to evaluate test sets. The existing supporting tools produce a lot of information including: input and produced output, structural coverage, mutation score, faults revealed, etc. However, such information is not linked to functional aspects of the software. In this work, we present an approach based on machine learning techniques to link test results from the application of different testing techniques. The approach groups test data into similar functional clusters. After this, according to the tester's goals, it generates classifiers (rules) that have different uses, including selection and prioritization of test cases. The paper also presents results from experimental evaluations and illustrates such uses. 相似文献
10.
A hybrid machine learning approach to network anomaly detection 总被引:3,自引:0,他引:3
Zero-day cyber attacks such as worms and spy-ware are becoming increasingly widespread and dangerous. The existing signature-based intrusion detection mechanisms are often not sufficient in detecting these types of attacks. As a result, anomaly intrusion detection methods have been developed to cope with such attacks. Among the variety of anomaly detection approaches, the Support Vector Machine (SVM) is known to be one of the best machine learning algorithms to classify abnormal behaviors. The soft-margin SVM is one of the well-known basic SVM methods using supervised learning. However, it is not appropriate to use the soft-margin SVM method for detecting novel attacks in Internet traffic since it requires pre-acquired learning information for supervised learning procedure. Such pre-acquired learning information is divided into normal and attack traffic with labels separately. Furthermore, we apply the one-class SVM approach using unsupervised learning for detecting anomalies. This means one-class SVM does not require the labeled information. However, there is downside to using one-class SVM: it is difficult to use the one-class SVM in the real world, due to its high false positive rate. In this paper, we propose a new SVM approach, named Enhanced SVM, which combines these two methods in order to provide unsupervised learning and low false alarm capability, similar to that of a supervised SVM approach.We use the following additional techniques to improve the performance of the proposed approach (referred to as Anomaly Detector using Enhanced SVM): First, we create a profile of normal packets using Self-Organized Feature Map (SOFM), for SVM learning without pre-existing knowledge. Second, we use a packet filtering scheme based on Passive TCP/IP Fingerprinting (PTF), in order to reject incomplete network traffic that either violates the TCP/IP standard or generation policy inside of well-known platforms. Third, a feature selection technique using a Genetic Algorithm (GA) is used for extracting optimized information from raw internet packets. Fourth, we use the flow of packets based on temporal relationships during data preprocessing, for considering the temporal relationships among the inputs used in SVM learning. Lastly, we demonstrate the effectiveness of the Enhanced SVM approach using the above-mentioned techniques, such as SOFM, PTF, and GA on MIT Lincoln Lab datasets, and a live dataset captured from a real network. The experimental results are verified by m-fold cross validation, and the proposed approach is compared with real world Network Intrusion Detection Systems (NIDS). 相似文献
11.
Paolo Soda Author Vitae 《Pattern recognition》2011,44(8):1801-1810
Class imbalance limits the performance of most learning algorithms since they cannot cope with large differences between the number of samples in each class, resulting in a low predictive accuracy over the minority class. In this respect, several papers proposed algorithms aiming at achieving more balanced performance. However, balancing the recognition accuracies for each class very often harms the global accuracy. Indeed, in these cases the accuracy over the minority class increases while the accuracy over the majority one decreases. This paper proposes an approach to overcome this limitation: for each classification act, it chooses between the output of a classifier trained on the original skewed distribution and the output of a classifier trained according to a learning method addressing the course of imbalanced data. This choice is driven by a parameter whose value maximizes, on a validation set, two objective functions, i.e. the global accuracy and the accuracies for each class. A series of experiments on ten public datasets with different proportions between the majority and minority classes show that the proposed approach provides more balanced recognition accuracies than classifiers trained according to traditional learning methods for imbalanced data as well as larger global accuracy than classifiers trained on the original skewed distribution. 相似文献
12.
In this paper a novel data mining algorithm, Clustering and Classification Algorithm-Supervised (CCA-S), is introduced. CCA-S enables the scalable, incremental learning of a non-hierarchical cluster structure from training data. This cluster structure serves as a function to map the attribute values of new data to the target class of these data, that is, classify new data. CCA-S utilizes both the distance and the target class of training data points to derive the cluster structure. In this paper, we first present problems with many existing data mining algorithms for classification problems, such as decision trees, artificial neural networks, in scalable and incremental learning. We then describe CCA-S and discuss its advantages in scalable, incremental learning. The testing results of applying CCA-S to several common data sets for classification problems are presented. The testing results show that the classification performance of CCA-S is comparable to the other data mining algorithms such as decision trees, artificial neural networks and discriminant analysis. 相似文献
13.
Marc Boullé 《Machine Learning》2006,65(1):131-165
While real data often comes in mixed format, discrete and continuous, many supervised induction algorithms require discrete
data. Efficient discretization of continuous attributes is an important problem that has effects on speed, accuracy and understandability
of the induction models. In this paper, we propose a new discretization method MODL1, founded on a Bayesian approach. We introduce a space of discretization models and a prior distribution defined on this model
space. This results in the definition of a Bayes optimal evaluation criterion of discretizations. We then propose a new super-linear
optimization algorithm that manages to find near-optimal discretizations. Extensive comparative experiments both on real and
synthetic data demonstrate the high inductive performances obtained by the new discretization method.
Editor: Tom Fawcett
1French patent No. 04 00179. 相似文献
14.
This paper describes a novel approach to machine learning, based on the principle of learning by reasoning. Current learning systems have significant limitations such as brittleness, i.e., the deterioration of performance on a different domain or problem and lack of power required for handling real-world learning problems. The goal of our research was to develop an approach in which many of these limitations are overcome in a unified, coherent and general framework. Our learning approach is based on principles of reasoning, such as the discovery of the underlying principle and the recognition of the deeper basis of similarity, which is somewhat akin to human learning. In this paper, we argue the importance of these principles and tie the limitations of current systems to the lack of application of these principles. We then present the technique developed and illustrate it on a learning problem not directly solvable by previous approaches. 相似文献
15.
Although there are several proposals in the instance selection field, none of them consistently outperforms the others over a wide range of domains. In recent years many authors have come to the conclusion that data must be characterized in order to apply the most suitable selection criterion in each case. In light of this hypothesis, herein we propose a set of measures to characterize databases. These measures were used in decision rules which, given their values for a database, select from some pre-selected methods, the method, or combination of methods, that is expected to produce the best results. The rules were extracted based on an empirical analysis of the behaviors of several methods on several data sets, then integrated into an algorithm which was experimentally evaluated over 20 databases and with six different learning paradigms. The results were compared with those of five well-known state-of-the-art methods. 相似文献
16.
Edward Me¸?yk Olgierd Unold 《Computers in human behavior》2011,27(5):1499-1506
The aim of this study was to use a machine learning approach combining fuzzy modeling with an immune algorithm to model sport training, in particular swimming. A proposed algorithm mines the available data and delivers the results in a form of a set of fuzzy rules “IF (fuzzy conditions) THEN (class)”. Fuzzy logic is a powerful method to cope with continuous data, to overcome problem of overlapping class definitions, and to improve the rule comprehensibility. Sport training is modeled at the level of microcycle and training unit by 12 independent attributes. The data was collected in two months (February-March 2008), among swimmers from swimming sections in Wroc?aw, Poland. The swimmers had minimum of 7 years of training and reached the II class level in swimming classification from 2005 to 2008. The goal of the performed experiments was to find the rules answering the question - how does the training unit influence swimmer’s feelings while being in water the next day? The fuzzy rules were inferred for two different scales of the class to be predicted. The effectiveness of the learned set of rules reached 68.66%. The performance, in terms of classification accuracy, of the proposed approach was compared with traditional classifier schemes. The accuracy of the result of compared methods is significantly lower than the accuracy of fuzzy rules obtained by a method presented in this study (paired t-test, P < 0.05). 相似文献
17.
《Expert systems with applications》2014,41(14):6086-6097
In the past few years, active learning has been reasonably successful and it has drawn a lot of attention. However, recent active learning methods have focused on strategies in which a large unlabeled dataset has to be reprocessed at each learning iteration. As the datasets grow, these strategies become inefficient or even a tremendous computational challenge. In order to address these issues, we propose an effective and efficient active learning paradigm which attains a significant reduction in the size of the learning set by applying an a priori process of identification and organization of a small relevant subset. Furthermore, the concomitant classification and selection processes enable the classification of a very small number of samples, while selecting the informative ones. Experimental results showed that the proposed paradigm allows to achieve high accuracy quickly with minimum user interaction, further improving its efficiency. 相似文献
18.
Mapping land-cover modifications over large areas: A comparison of machine learning algorithms 总被引:3,自引:0,他引:3
John Rogan Janet Franklin Doug Stow Jennifer Miller Curtis Woodcock Dar Roberts 《Remote sensing of environment》2008,112(5):2272-2283
Large area land-cover monitoring scenarios, involving large volumes of data, are becoming more prevalent in remote sensing applications. Thus, there is a pressing need for increased automation in the change mapping process. The objective of this research is to compare the performance of three machine learning algorithms (MLAs); two classification tree software routines (S-plus and C4.5) and an artificial neural network (ARTMAP), in the context of mapping land-cover modifications in northern and southern California study sites between 1990/91 and 1996. Comparisons were based on several criteria: overall accuracy, sensitivity to data set size and variation, and noise. ARTMAP produced the most accurate maps overall ( 84%), for two study areas — in southern and northern California, and was most resistant to training data deficiencies. The change map generated using ARTMAP has similar accuracies to a human-interpreted map produced by the U.S. Forest Service in the southern study area. ARTMAP appears to be robust and accurate for automated, large area change monitoring as it performed equally well across the diverse study areas with minimal human intervention in the classification process. 相似文献
19.
随着信息科技的快速发展,计算机中的经典算法在葡萄酒产业中得到了广泛的研究与应用。机器学习算法的特点是运用人工智能技术,在经过大量的样本集训练和学习后可以自动地找出运算所需要的参数和模型。针对数据挖掘中常用的机器学习算法进行相关的研究。以分类算法为例进行数据挖掘技术的研究。针对SVM(支持向量机)泛化能力弱的缺点,给出了一种改进的SVM-NSVM,即先对训练集进行精选,根据每个样本与最近邻类标的异同判断样本点的取舍,然后再用SVM训练得到分类器。针对kNN(k-最近邻)训练数据集大的缺点,给出了一种改进的通过渐进的思想来寻找最近邻点。实验表明,与SVM相比,NSVM在分类正确率、分类速度上有一定的优势。改进的kNN算法的复杂度明显降低。此外,设计了葡萄酒信息数据分析系统,利用数据挖掘方法对极大量的葡萄酒信息数据进行分析、对比与匹配,从而可挖掘葡萄酒的主要成分对比信息和营销潜在信息等;再对这些成分进行相应的分析,并与高质量葡萄酒中的成分进行相应的对比,最终得出葡萄酒的相关分析信息数据,其可帮助葡萄酒生产厂商对葡萄酒的成分含量、品质进行分析。 相似文献
20.
Efstathios Stamatatos 《Artificial Intelligence》2005,165(1):37-56
This article addresses the problem of identifying the most likely music performer, given a set of performances of the same piece by a number of skilled candidate pianists. We propose a set of very simple features for representing stylistic characteristics of a music performer, introducing ‘norm-based’ features that relate to a kind of ‘average’ performance. A database of piano performances of 22 pianists playing two pieces by Frédéric Chopin is used in the presented experiments. Due to the limitations of the training set size and the characteristics of the input features we propose an ensemble of simple classifiers derived by both subsampling the training set and subsampling the input features. Experiments show that the proposed features are able to quantify the differences between music performers. The proposed ensemble can efficiently cope with multi-class music performer recognition under inter-piece conditions, a difficult musical task, displaying a level of accuracy unlikely to be matched by human listeners (under similar conditions). 相似文献