共查询到20条相似文献,搜索用时 0 毫秒
1.
粗糙集理论是一个新的处理不确定性问题的数学工具,属性约简是粗糙集理论的核心问题之一。但求解最优约简已被证明是一个NP—hard问题。基于属性重要度的启发式算法在属性约简中应用的较多.文中分别介绍了基于区分矩阵、基于相关矩阵和基于信息量的属性约简算法。对其思想进行了剖析和总结。 相似文献
2.
基于改进分辨矩阵的属性约简方法 总被引:1,自引:0,他引:1
在分辨矩阵的属性约简算法的研究中,需比较决策系统中各对象生成矩阵元素,导致所得分辨矩阵过于庞大,且造成较大的时间开销.为降低利用分辨矩阵求取属性约简算法的复杂度,依据条件等价类将原决策系统分解为一相容对象集与一非相容对象集,给出条件相对于决策的可辨识关系定义与改进的分辨矩阵定义,将条件相对于决策的可辨识关系变化作为属性约简的判定标准,结果证明改进分辨矩阵的属性约简与保持正域不变的属性约简等价.推理证明与仿真实例说明,改进方法的高效性与完备性. 相似文献
3.
改进的基于简化二进制分辨矩阵的属性约简方法 总被引:1,自引:0,他引:1
在基于二进制分辨矩阵的属性约简方法中,删除法即从属性全集中依次删除冗余属性,直至剩余的属性集是一个最小约简.针对传统的基于二进制分辨矩阵的删除法效率较低且得不到最小约简的问题,提出一种改进的二进制分辨矩阵属性约简方法.首先对决策表进行简化,然后给出一种改进的简化二进制分辨矩阵方法;其次通过一个新的属性约简度量方法一次性删除多个属性,并从理论上分析了该方法的可行性;最后通过实验证明了得到的约简结果是最小约简. 相似文献
4.
针对目前基于差别矩阵的属性约简算法需要耗费大量的时间和空间,粗糙集中求属性核和属性约简更新效率低以及有关属性约简的增量式更新算法目前还比较少等问题,提出了一种基于改进差别矩阵的属性约简增量式更新算法.该算法在更新差别矩阵时,仅须插入某一行及某一列,或删除某一行并修改相应的列,因而可有效地提高核和属性约简的更新效率.然后在分析新增对象x与原决策系统对象的关系的基础上,给出了属性约简增量更新算法.理论与实验分析表明,提出的算法提高了属性约简的更新效率,明显降低了时间和空间复杂度. 相似文献
5.
基于有序差别集和属性重要性的属性约简 总被引:1,自引:0,他引:1
针对粗糙集理论的属性约简问题,提出新的差别矩阵简化算法,该算法在无需排序和较少通历次数的情况下
简化了差别矩阵,明显提高了简化速度并最终得到简化的有序差别集。实验验证了该算法的高效性;给出度量属性重
要性的新标准,即根据属性所在差别矩阵元素的权重、在差别集中出现的频数和吸收能力3方面来度量其重要性;在
上述两者基础上,提出一种基于有序差别集和属性重要性的属性约简新方法,理论分析证明新方法的最坏时间复杂度
低于其它基于差别矩阵的属性约简算法。大量实验结果也表明,新方法的有效性甚至可以在很大程度上得到最小属
性约简。 相似文献
6.
从属性集互信息的角度分析了粗糙集理论的属性约简问题。粗糙集属性约简通常采用Best-first启发式搜索。本文运用属性集互信息作为属性约简度量,提出了前向Beam搜索粗糙集属性约简算法。实验表明,属性约简算法具有良好的运行效果。 相似文献
7.
对于协调的信息系统,定义了其条件属性集的幂集上的两个闭算子C(R)与C(r),讨论了相应闭集族的性质,并证明了它们与不可辨识属性集族之间的关系。提出属性约简的一种新方法,给出Cr=CR的充要条件,并证明所定义的属性约简与文献[4,7]中约简的等价性。 相似文献
8.
运用可辨识矩阵表示信息系统中所有对象的区分信息,为研究属性约简提供了新方向。然而,传统的可辨识矩阵在构造结束后才利用核属性消除冗余元素项,忽略了核属性在矩阵构建过程中的作用。针对这一问题,文中做了以下研究:1)优化可辨识矩阵的构造方式,在计算任意两个对象的区分信息之前,先判断核属性上的取值是否相等,如果不相等,则直接将对应元素项记为Φ,忽略对其他条件属性的判断;2)提出属性加权重要度的概念,综合考虑每个条件属性占可辨识矩阵中非空元素项的比率(称为宏观重要度)与每个属性对区分对象的贡献程度(称为微观重要度),并通过例子说明了该度量方法的合理性;3)针对优化后的矩阵仍然存在大量冗余元素和空集这一缺陷,结合差别信息树的概念提出基于优化可辨识矩阵和属性加权重要度的差别信息树。按照属性加权重要度对优化可辨识矩阵中所有非空元素项进行排序,使得重要度高的属性被更多的节点共享;且在构建过程中将不包含核属性的元素项映射到树中的一条路径上,而包含核属性的元素项则被直接忽略。最后,提出基于优化可辨识矩阵和改进差别信息树的约简算法HSDI-tree。在UCI的5个数据集上分别比较了HSDI-tree算法与CDI-tree,DI-tree和IDI-tree算法的约简结果和节点个数,实验结果表明HSDI-tree算法能有效找到最小属性约简且空间压缩能力更好。 相似文献
9.
经典的多粒度粗糙集模型采用多个等价关系(多粒度结构)来逼近目标集。根据乐观和悲观策略,常见的多粒度粗糙集分为两种类型:乐观多粒度粗糙集和悲观多粒度粗糙集。然而,这两个模型缺乏实用性,一个过于严格,另一个过于宽松。此外,多粒度粗糙集模型由于在逼近一个概念时需要遍历所有的对象,因此非常耗时。为了弥补这一缺点,进而扩大多粒度粗糙集模型的使用范围,首先在不完备信息系统中引入了可调节多粒度粗糙集模型,随后定义了局部可调节多粒度粗糙集模型。其次,证明了局部可调节多粒度粗糙集和可调节多粒度粗糙集具有相同的上下近似。通过定义下近似协调集、下近似约简、下近似质量、下近似质量约简、内外重要度等概念,提出了一种基于局部可调节多粒度粗糙集的属性约简方法。在此基础上,构造了基于粒度重要性的属性约简的启发式算法。最后,通过实例说明了该方法的有效性。实验结果表明,局部可调节多粒度粗糙集模型能够准确处理不完备信息系统的数据,降低了算法的复杂度。 相似文献
10.
11.
基于Rough集和数据库技术的属性约简算法 总被引:6,自引:0,他引:6
对核属性的作用,以及求取属性核心的代价等进行了分析,并运用Rough集的理论给出了判定一个属性子集中是否包含属性核心的充要条件.根据这些研究结论对基于粗糙集的属性约简算法进行改进,并利用数据库查询语言实现了算法.实验表明对于大数据集,该算法的效率大大高于一些基于主存的算法,且易于实现. 相似文献
12.
属性约简是粗糙集理论的重要应用之一,其目的是在保持分类能力不变的前提下去掉冗余的属性,从而简化信息系统。由于经典粗糙集等价关系的要求过于严格,为了更好地解决实际问题,将粗糙集与二型模糊集结合,得到二型模糊粗糙集。利用论域和特征空间的积空间上的两个一型模糊集来构造论域的一个二型模糊划分,将模糊粗糙集属性约简的模型推广到二型模糊粗糙集框架中,得到了一个二型模糊粗糙属性约简的模型,并举例说明了用此模型进行属性约简的方法。 相似文献
13.
《Expert systems with applications》2014,41(15):6748-6754
Attribute reduction is one of the most important issues in the research of rough set theory. Numerous significance measure based heuristic attribute reduction algorithms have been presented to achieve the optimal reduct. However, how to handle the situation that multiple attributes have equally largest significances is still largely unknown. In this regard, an enhancement for heuristic attribute reduction (EHAR) in rough set is proposed. In some rounds of the process of adding attributes, those that have the same largest significance are not randomly selected, but build attribute combinations and compare their significances. Then the most significant combination rather than a randomly selected single attribute is added into the reduct. With the application of EHAR, two representative heuristic attribute reduction algorithms are improved. Several experiments are used to illustrate the proposed EHAR. The experimental results show that the enhanced algorithms with EHAR have a superior performance in achieving the optimal reduct. 相似文献
14.
15.
16.
基于边界域的不完备信息系统属性约简方法 总被引:1,自引:0,他引:1
研究了用矩阵来计算不完备信息系统的属性约简方法,引入了容差关系矩阵等概念来计算决策表的上下近似集;然后给出了基于容差关系矩阵的决策表边界域的计算方法,再利用边界域的基数相等作为评价属性约简的准则,提出了基于边界域的启发式约简方法;最后,举例说明了属性约简的操作方法和所提算法的可行性。 相似文献
17.
18.
19.
20.
Recommender systems play an important role in quickly identifying and recommending most acceptable products to the users. The latent user factors and item characteristics determine the degree of user satisfaction on an item. While many of the methods in the literature have assumed that these factors are linear, there are some other methods that treat these factors as nonlinear; but they do it in a more implicit way. In this paper, we have investigated the effect of true nature (i.e., nonlinearity) of the user factors and item characteristics, and their complex layered relationship on rating prediction. We propose a new deep feedforward network that learns both the factors and their complex relationship concurrently. The aim of our study was to automate the construction of user profiles and item characteristics without using any demographic information and then use these constructed features to predict the degree of acceptability of an item to a user. We constructed the user and item factors by using separate learner weights at the lower layers, and modeled their complex relationship in the upper layers. The construction of the user profiles and the item characteristics, solely based on rating triples (i.e., user id, item id, rating), overcomes the requirement of explicit demographic information be given to the system. We have tested our model on three real world datasets: Jester, Movielens, and Yahoo music. Our model produces better rating predictions than some of the state-of-the-art methods which use demographic information. The root mean squared error incurred by our model on these datasets are 4.0873, 0.8110, and 0.9408 respectively. The errors are smaller than current best existing models’ errors in these datasets. The results show that our system can be integrated to any web store where development of hand engineered features for recommending products is less feasible due to huge traffics and also that there is a lack of demographic information about the users and the items. 相似文献