首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production in solid state fermentation (SSF) of several hydrolytic enzymes by Aspergillus awamori on a mixture of grape pomace and orange peels has been studied in two configurations of bioreactor: packed bed and tray-type. When the effect of aeration in both reactors was compared, using the trays-type with an air flow rate of 3 mL/gds·min, average activities of 42.64 and 2.16 IU/gds were measured for xylanase and CMCase, respectively; however in the case of the column reactor the aeration must be doubled to obtain similar activity values. These differences were more significant in the case of exo-PG. The extracts obtained in this reactor were applied to orange juice and the cloudiness was markedly reduced, even improving the efficiency of a commercial enzyme preparation. Thus, while the turbidity of the fresh juice was 4625 NTU, treatment with the extracts reduced the value to 24.25 NTU. In a similar way the clarity increased to 95% after treatment with enzyme extracts. According to the results obtained, the proposed process for grape pomace and orange peels reutilization constitutes a viable alternative for many companies to revalorize their residues and to reduce their contaminant capacity.  相似文献   

2.
Culture conditions for the generation of products using yeast have been optimized for fermentative processes in industry involving predominantly submerged medium (SmF). However, solid‐state fermentation (SSF) is now a realistic alternative system for the production of recombinant proteins and metabolites of interest in the market, with great potential in biofuels production, food, chemical and pharmaceutical industries. One of the main advantages of SSF over SmF is the reduction of downstream expenses. Also, the use of artificial and very cheap solid supports for yeast SSF such as polyurethane foam or amberlite helps with study of the physiology of such systems. This mini‐review makes an overview of previous research and emphasizes the major physiological advantages of yeast SSF that can be used for new processes and product development and stresses the need for integrated approaches between adaptive evolution and high‐throughput genetic analysis. © 2015 Society of Chemical Industry  相似文献   

3.
BACKGROUND: Gluconic acid (GA) production by immobilized cells of mutant Aspergillus niger ORS‐4.410 on polyurethane sponge (PUS) and calcium‐alginate (Ca‐alginate) was evaluated in repeated batches of solid state surface fermentation (SSF) and submerged fermentation (SmF) conditions, respectively, utilizing rectified grape must as carbon source. RESULTS: The passive immobilization of cells in fermentation medium solid support of having 0.4 cm3 cube size, 4% spore suspension, 0.6 g inoculum of PUS immobilized cells at 32 °C and 2.0 L min?1 resulted in the maximum GA production (88.16 g L?1) with a 92.8% yield, while the Ca‐alginate matrix with a 0.5 cm diameter bead size, 2–3% spore suspension, 15 g inoculum at 34 °C and 150 rpm agitation speed revealed 67.19 g L?1 GA with a 85.2% yield. Repeated use of PUS showed higher levels of GA (110.94 g L?1) in the third–fourth fermentation cycles with 95–98% yield and 22.50 g L?1 d?1 productivity under SSF that was 2.5‐fold higher than the productivity obtained from a typical fermentation cycle, and 54% greater than the productivity obtained with repetitive use of Ca‐alginate immobilized cells of A. niger under SmF. CONCLUSION: Using immobilized cells of A. niger in PUS, the rectified form of grape must can be utilized for GA production as an alternative source of carbohydrate by replacing the conventional fermentation conditions. Copyright © 2008 Society of Chemical Industry  相似文献   

4.
研究了固体培养条件下外加营养碳源葡萄糖及土豆汁 ,微量元素Cu2 + 、Mn2 + 对贝壳状革耳菌产木素降解酶、纤维素酶和半纤维素酶的影响。结果表明 ,营养碳源和微量元素对贝壳状革耳菌漆酶的产生有显著的促进作用 ,外加碳源土豆汁要比外加葡萄糖所产生的促进作用大。对于依赖锰过氧化酶、CMC酶和半纤维素酶 ,外加营养碳源和微量元素对其产生无明显影响 ,而微晶纤维素酶在各个固体培养过程中都未检测到。  相似文献   

5.
M.P. García-Aparicio 《Fuel》2011,90(4):1624-1630
Barley straw is nowadays being considered a potential lignocellulosic raw material for fuel-ethanol production as an alternative to starch- or sugar-containing feedstock. In this work, several configuration strategies for ethanol production from steam-exploded barley straw by Kluyveromyces marxianus CECT 10875 have been studied with the aim of obtaining higher ethanol concentrations.Different substrate loading (2-15%, w/v) were studied during enzymatic hydrolysis. The xylanase contribution on glucose production and glucan conversion at different substrate loading was also investigated. In addition, three different process configurations, separate hydrolysis and fermentation, simultaneous saccharification and fermentation and presaccharification and simultaneous saccharification, were compared at different water insoluble solids concentration (5%, 10% and 15%). The influence of xylanase addition on the ethanol yield was studied as well.Results show that endo-xylanases improved glucan conversion and ethanol yield compared with a standard enzymatic mixture, markedly at low substrate concentration. The positive effect of added xylanase was most evident at early stages of enzymatic hydrolysis. Regarding process configurations for the period of 72 h, SSF with endo-xylanases provided the best ethanol yield, nearly 70%, for 10% WIS. Nonetheless, the higher ethanol concentration, 29.4 g/l, was obtained at 15% WIS.  相似文献   

6.
BACKGROUND: Growth kinetics of Pichia pastoris and heterologous expression of Trametes versicolor laccase were compared. This is the first study of its kind between solid‐state yeast cultures done on polyurethane foam (PUF) and submerged liquid fermentations (SmF). RESULTS: The maximum values of biomass were similar for SSF (solid‐state fermentation) and SmF experiments when the BOD (biochemical oxygen demand) was lower than 100 g L?1. For higher BOD levels, the maximum values of biomass were 55 g L?1 (SSF) and 35 g L?1 (SmF). Micrographs of PUF preparations showed yeast growing within liquid lamellae, thinner than 100 µm, forming large horizontal aggregates. Yeast aggregates were much smaller in SmF than in SSF experiments; however, laccase expression was lower in PUF than in SmF, unless the methanol concentration was increased to 63 g L?1, which was inhibitory only to the SmF system. CONCLUSION: The results show that oxygen mass transfer is more efficient in SSF, which is related to the higher area/volume ratio compared with SmF. Induction differences may also be due to hindered diffusion of methanol within large yeast aggregates. Copyright © 2009 Society of Chemical Industry  相似文献   

7.
液固态发酵苹果渣生产饲料蛋白的研究   总被引:4,自引:0,他引:4  
以过60目筛的苹果渣作为液态发酵原料,添加12倍的水分和质量分数4%的蔗糖,深层发酵24 h后,以0.3 mL/g底物的量接入固态培养体系,发酵72 h即可达到理想效果。产物中粗蛋白和真蛋白质量分数分别从16.28%、10.02%提高到29.08%和26.63%,而粗纤维素则由16.68%降低到10.32%,且氨基酸丰富、组成合理,符合国家饲料卫生标准要求,完全可作为蛋白饲料广泛应用于养殖领域。研究表明,液固态发酵明显优于单独固态发酵,适合工业化生产。  相似文献   

8.
固态发酵生产单细胞蛋白的计量学和动力学   总被引:5,自引:0,他引:5  
徐抗震  宋纪蓉  马海霞  黄洁 《化学工程》2005,33(2):48-50,54
以苹果渣固态发酵(SSF)生产单细胞蛋白(SCP)为例,利用元素分析、曲线拟合和数学推导研究了固态发酵生产SCP的计量学和动力学,获得了适合的发酵计量学方程、数学模型和动力学方程。在此基础上总结出一种可行方法,完善固态发酵生产SCP的研究。  相似文献   

9.
This study was conducted to evaluate the presence, origination and classification of various hydrolyzing enzymes from malt and their specified hydrolyzing effects on various substrates for bioethanol production and to link these characteristics with the future prospects of bioethanol production. These enzymes are categorized as cell wall, starch, protein, lipid, polyphenol and thiol hydrolyzing enzymes based on their substrate specificity. Waste from beer fermentation broth (WBFB) has been evaluated as a rich source of malt derived hydrolyzing enzymes with significant self potential for bioethanol production. However, yeast cells cannot survive at the high temperature required for the saccharification activities of hydrolyzing enzymes during simultaneous saccharification and fermentation (SSF). This dilemma might be resolved by bioethanol production at elevated temperatures via cell-free fermentation systems in the presence of malt hydrolyzing enzymes. Moreover, emerging technologies such as genetic engineering in biomass and biotransformation in cell-free enzymatic systems will likely hasten bioethanol production in the near future. The present study adds new dimensions to eco-friendly bioethanol production from renewable and waste energy resources based on the specific hydrolyzing activities of malt enzymes.  相似文献   

10.
Chinese rice wine making is a typical simultaneous saccharification and fermentation(SSF) process.During the fermentation process,temperature is one of the key parameters which decide the quality of Chinese rice wine.To optimize the SSF process for Chinese rice wine brewing,the effects of temperature on the kinetic parameters of yeast growth and ethanol production at various temperatures were determined in batch cultures using a mathematical model.The kinetic parameters as a function of temperature were evaluated using the software Origin8.0.Combing these functions with the mathematical model,an appropriate form of the model equations for the SSF considering the effects of temperature were developed.The kinetic parameters were found to fit the experimental data satisfactorily with the developed temperature-dependent model.The temperature profile for maximizing the ethanol production for rice wine fermentation was determined by genetic algorithm.The optimum temperature profile began at a low temperature of 26 °C up to 30 h.The operating temperature increased rapidly to 31.9 °C,and then decreased slowly to 18 °C at 65 h.Thereafter,the temperature was maintained at18 °C until the end of fermentation.A maximum ethanol production of 89.3 g·L~(-1)was attained.Conceivably,our model would facilitate the improvement of Chinese rice wine production at the industrial scale.  相似文献   

11.
Commercial enzyme is usually needed for the bioconversion of organic waste or biomass. The overall cost could be reduced very significantly if enzyme production could be integrated with its application, avoiding unnecessary steps in enzyme production (such as concentration, recovery and transportation). This investigation attempted to integrate crude glucoamylase production with lactic acid fermentation of food waste. A maximum glucoamylase activity of 1850 U g?1 was obtained with Aspergillus nigerduring solid‐state fermentation (SSF) of food waste, 14.8 times more than that obtained during submerged fermentation (SmF). The optimum pH for producing glucoamylase was 4.6, and glucoamylase retained 83.5% of peak activity at pH 3.0. Without any recovery treatment, the glucoamylase produced by SSF could be used directly for lactic acid fermentation of food waste. Lactic acid concentration reached 45.5 g L?1 with the addition of the crude enzyme, 72% higher than the control. No side‐effects were caused by the viable A. niger in the crude enzyme. This work successfully integrated glucoamylase production with lactic acid fermentation. The enzyme produced by SSF of food waste had sufficient activity to be used directly without any treatment. The integrated process proposed in this study was very economical and may be helpful to other bioconversions. Copyright © 2008 Society of Chemical Industry  相似文献   

12.
高底物浓度纤维乙醇同步糖化发酵工艺的比较   总被引:1,自引:0,他引:1  
常春  王铎  王林风  马晓建 《化工学报》2012,63(3):935-940
引言日益加剧的能源危机和环境污染,正迫使人们寻求新的可再生替代能源。纤维乙醇作为一种重要的生物质替代能源,经过近40多年的发展,已经具备了实现工业化生产的潜力。为了进一步降低纤  相似文献   

13.
蒸汽爆破麦草同步糖化发酵转化乙醇的研究   总被引:4,自引:0,他引:4  
罗鹏  刘忠  杨传民  王高升 《化学工程》2007,35(12):42-45
近年来对木质生物资源同步糖化发酵转化乙醇的研究较多,但是,麦草同步糖化发酵转化乙醇的最佳工艺条件还未确定。文中采用正交试验设计的方法,对在混合酶(纤维素酶Celluclast 1.5 1,β-葡萄糖苷酶Novozym 188)与酿酒酵母菌作用下,稀硫酸催化的蒸汽爆破麦草原料同步糖化发酵转化乙醇的工艺条件进行研究,详细讨论了反应温度、底物质量浓度、发酵液pH值、纤维素酶浓度对乙醇质量浓度和得率的影响。结果表明,工艺条件对乙醇质量浓度和得率的影响程度由高到低依次为:底物质量浓度、纤维素酶浓度、发酵液pH值、反应温度。最佳工艺条件为反应温度35℃,底物质量浓度100 g/L,发酵液pH值5.0,纤维素酶浓度30 FPU/g。在此条件下,随着反应时间的延长,乙醇质量浓度持续上升。反应72 h后,乙醇质量浓度和得率分别达到22.7 g/L和65.8%。  相似文献   

14.
耐热酿酒酵母FE-B的分离筛选及应用研究   总被引:1,自引:0,他引:1  
从米酒酒曲中筛选出来一株乙醇发酵菌株,命名为FE-B,经鉴定为酿酒酵母,CGMCC保藏号为2735。FE-B在28,36和40℃都能生长,28 h左右达到稳定期时培养物的菌体浓度分别为4.24,3.95和3.23 g(DCW)/L。FE-B在28,36和42℃发酵24 h,发酵液中的乙醇浓度分别为8.0%,8.1%和3.3%。FE-B在温度≤41℃,酶加入量25 IU/g(秸秆干基),固含量10%条件下进行同步糖化与发酵,乙醇产生速率随温度上升而递增,当温度为41℃时,72 h后体系中乙醇浓度可达2.11%,纤维素水解率87.6%,具有很好的应用前景。  相似文献   

15.
Characterization of cookies made with deseeded grape pomace. The objective of this study was to evaluate deseeded grape pomace as a potential ingredient to elaborate some food products. Cookies were made with flour containing four levels of deseeded grape pomace (0, 5, 7.5 and 10%). Moisture, protein, ashes, fat, tannins and dietary fiber contents were determined in both the deseeded of grape pomace and the cookies. Besides, color, sensorial acceptability and biological evaluations of Net Protein Ratio (NPR), Apparent Digestibility (AD) and True Digestibility (TD) of Protein were determined to the cookies. Substantial amounts of dietary fiber and ashes were found in both the deseeded grape pomace and the cookies. Total dietary fiber increased while adding more deseeded grape pomace. Cookies were well accepted as observed in the sensory evaluation, showing no significative differences among the four levels of deseeded grape pomace addition. The addition of deseeded grape pomace imparted a darker color to the cookies. The dark color was greater in the samples containing more fiber which was indicated by the lower L color value. Regarding nutritional analysis, the higher the deseeded grape pomace addition, the lower the NPR, AD, and TD values. The NPR was affected in greater degree, although these differences were not significant. It is possible to use deseeded grape pomace as an ingredient to make high fiber cookies with acceptable sensorial attributes.  相似文献   

16.
Although simultaneous saccharification and fermentation (SSF) has been investigated extensively, the optimum condition for SSF of wheat straw has not yet been determined. Dilute sulfuric acid impregnated and steam explosion pretreated wheat straw was used as a substrate for the production of ethanol by SSF through orthogonal experiment design in this study. Cellulase mixture (Celluclast 1.5 l and ?-glucosidase Novozym 188) were adopted in combination with the yeast Saccharomyces cerevisiae AS2.1. The effects of reaction temperature, substrate concentration, initial fermentation liquid pH value and enzyme loading were evaluated and the SSF conditions were optimized. The ranking, from high to low, of influential extent of the SSF affecting factors to ethanol concentration and yield was substrate concentration, enzyme loading, initial fermentation liquid pH value and reaction temperature, respectively. The optimal SSF conditions were: reaction temperature, 35°C; substrate concentration, 100 g·L-1; initial fermentation liquid pH, 5.0; enzyme loading, 30 FPU·g-1. Under these conditions, the ethanol concentration increased with reaction time, and after 72 h, ethanol was obtained in 65.8% yield with a concentration of 22.7 g·L-1.  相似文献   

17.
木质纤维生物质同步糖化发酵(SSF)生产乙醇的研究进展   总被引:3,自引:1,他引:2  
综述了有关木质纤维生物质原料同步糖化发酵生产乙醇的最新研究进展和未来发展方向:同步糖化发酵是一种用于从木质纤维原料生产乙醇的工艺过程,此工艺的优点是酶水解与发酵同时进行,可以减少最终产物对酶水解的抑制作用,并减少投资成本,是最具发展潜力和优势的工艺之一。近年来在优化预处理工艺、降低纤维素酶成本以及己糖戊糖协同发酵等方面的研究都取得了长足的进步,其中以小麦秸秆为原料进行同步糖化发酵所得到的乙醇浓度接近40g/L。  相似文献   

18.
Bacterial nanocellulose (BNC) was produced by Gluconacetobacter xylinus under static conditions using grape pomace extract (the most abundant residue of the wine industry) as a carbon source and corn steep liquor (a byproduct of corn wet‐milling) as the main nitrogen source. Carbon and nitrogen source concentrations, as well as inocula size, fermentation time, and temperature, were all considered in order to maximize BNC production by the use of statistically designed experiments and the response surface methodology. At optimum production conditions, the effect of fermentation time on morphology, solids content, chemical structure, crystallinity, thermal decomposition pattern, and storage modulus of dried BNC pellicles was analyzed. The results evidenced that dried BNC pellicles that were incubated for longer times showed higher thermal stability, higher crystallinity, and higher storage modulus, resulting from a denser nanoribbons network. All of these characteristics will certainly play a role in the performance of BNC in practical applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43109.  相似文献   

19.
The batch simultaneous saccharification and fermentation (SSF) of microwave/acid/alkali/H2O2 pretreated rice straw to ethanol was optimized using cellulase from Trichoderma reesei and Saccharomyces cerevisiae YC-097 cells prior to the fed-batch SSF studies. The batch SSF optima were 10% w/v substrate, 40°C, 15 mg cellulase/g substrate, initial pH 5.3, and 72 hours. Under the optimum conditions the ethanol concentration and its yield were 29.1 g/L and 61.3% respectively. Based on the optimal batch SSF, the fed-batch SSF was investigated and its operation parameters were optimized. Under its optimal conditions the ethanol concentration reached 57.3 g/L, while its productivity and yield were only slightly less than those in the batch SSF. This suggests that fed-batch SSF is a potential operation mode for effective ethanol production from microwave/acid/alkali/H2O2 pretreated rice straw.  相似文献   

20.
BACKGROUND: In Mediterranean countries, olive tree pruning provides a widely available renewable agricultural residue with, currently, no industrial application. This residue could provide feedstock for the bioethanol industry. In the present study, olive tree pruning biomass pretreated with both ‘liquid hot water’ and ‘dilute‐sulfuric acid’ was tested as a substrate for ethanol production. Three different process configurations, separate hydrolysis and fermentation (SHF), simultaneous saccharification, fermentation and prehydrolysis (PSSF), and simultaneous saccharification and fermentation (SSF), were compared at different water‐insoluble solids concentrations. RESULTS: High ethanol concentration of about 3.7% (v/v) was obtained by separate hydrolysis and fermentation or prehydrolysis and simultaneous saccharification and fermentation of liquid hot water pretreated at 23% (w/w) substrate loading. CONCLUSION: The nature of the pretreated residue allows high substrate concentration (≥17% w/w) to be used in the enzymatic hydrolysis step. Substrate loading of 17% DM has been shown to provide a compromise between hydrolysis efficiency and glucose concentrations for the same enzyme/substrate ratio. Prehydrolysis prior to simultaneous saccharification and fermentation facilitated SSF performance at high substrate loading on liquid hot water pretreated olive pruning residue. This effect was not observed with dilute‐acid pretreated substrate. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号