首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
韦立 《工具技术》2003,37(6):55-56
在测量渐开线圆柱齿轮的公法线长度W时 ,需合理选择跨齿数k。如选取的跨齿数过大 ,则测齿卡尺的量爪与齿廓的切点会偏向齿顶 (甚至无法相切 ) ;如选取的跨齿数过小 ,则测齿卡尺的量爪与齿廓的切点会偏向齿根。合理的跨齿数应使卡尺量爪与齿廓的切点位于齿高中部 (分度圆上或分度圆附近 )。本文分别对标准压力角α =2 0°的直齿标准齿轮和直齿变位齿轮的跨齿数计算方法作一介绍。  1 直齿标准齿轮跨齿数k的计算方法对于模数为m的标准直齿轮 ,设测量公法线长度W时所选跨齿数为k ,齿轮分度圆半径为r ,根据公法线长度测量原理 (见图 1) ,分…  相似文献   

2.
渐开线圆柱齿轮,一般用公法线长度(?)控制齿厚。但在下列情况时,常用量柱距M间接控制齿厚:(1)齿宽b相似文献   

3.
孙庆华 《机械制造》1990,28(7):6-8,10
渐开线圆柱齿轮通常以测量公法线长度W或量柱测量距M来控制其齿厚。当斜齿轮的齿宽小于W.sinβb(βb为基圆螺旋角)时,因无法测量W而采用测量M值法。对于偶数齿斜齿轮来说: M=2r_M+d_P (1)式中:r_M——量柱中心至齿轮中心的距离, d_P——量柱直径(也可以是量球直径)。对于奇数齿斜齿轮通常有: M=2r_Mcos(90°/Z)+d_P (2)式中:Z——齿轮齿数。应该指出:上式只适用于使用两个处在同一齿轮端截面上的量球作测量,而不适用于以两根量柱作测量。本文将介绍奇数齿斜齿轮的量柱测量法。  相似文献   

4.
黄建中 《工具技术》1994,28(4):41-42
<正>在齿轮测量中,经常使用量棒(球)测量法。其具体方法是用两个直径相同的量棒(球)放在齿轮两端的齿槽内,测其跨棒(球)距M值,可借助M值和d_1值(量棒直径)求分度圆齿原s_t  相似文献   

5.
刘善臣  张佰通 《机械》1990,17(3):43-46
齿轮跨棒(球)距读数“M”值的测量法应用较广泛。被引进的日本十铃等汽车的圆柱齿轮,均要求测量跨棒(球)距。由于其测量工具简单,测量灵敏度(准确度)比测公法线长度“W”及弦齿厚“S_(xn)”高,也像测W一样不受齿轮顶径制造误差影响,不受齿宽影响,所以许多厂家把M值作为重要检查项目标注到产品图上。 M值的测量方法很多,有单量棒(球)法(测半边的)、双量棒(球)测量法,还有三(或四)量棒(球)测量法。最常用的  相似文献   

6.
渐开线圆柱齿轮常用的齿厚测量方法有公法线长度、量柱(或球)距、分度圆弦齿厚、固定弦齿厚四种方法。后两种方法是测量单个齿,一般用于大型齿轮;对于精度要求不太高的齿轮也常用分度圆弦测量法;公法线长度测量在外齿轮上用得最多,内齿轮也可用,大齿轮测量因受量具限制很少用;量柱距测量主要用于内齿轮和小模数齿轮。  相似文献   

7.
在加工直齿渐开线齿轮或渐开线花键轴的过程中,经常使用两个标准圆柱形量棒来测量渐开线齿轮或渐开线花键轴分度圆弧齿厚,如图所示。图中跨棒距种量值M与渐开线齿轮或花键轴(以下抗称为齿轮)分度圆弧齿厚S之间的关系如下: 偶数齿时:M=d_0/cosα_M d_p…………(1) 奇数齿时:M=d_0/cosα_M·cos(90°/Z) d_p…(2) 式中:d_0—齿轮基圆直径;d_p—标准圆柱量棒(以下简称量棒)直径,一般取d_p=1.68m_s,并取成标准值;m_s—齿轮端面模数;α_M—量棒中心所在圆上的压力角。α_M按下式计算:  相似文献   

8.
小模数齿轮齿槽间隙小,接触式测量难度高,且易损坏测头,本文主要研究基于视觉的未知参数小模数齿轮的齿距偏差和齿廓偏差测量.基于亚像素数字图像处理技术定位齿轮测量基准,即齿轮几何中心,并测量得到齿数、模数、齿顶圆直径和齿根圆直径;依据齿轮精度标准ISO1328-1:2013中偏差项目定义,给出了基于视觉测量的齿轮齿距偏差和...  相似文献   

9.
齿轮齿厚的测量,一般有公法线长度法、分度圆弧齿厚法、固定弦弦齿厚法及跨棒距测量法等。在各种机械设计手册中均给出了计算公式。但当变位系数的绝对值较大时,用公法线长度法。分度圆孤齿厚法、固定结弦齿厚法测量时,其卡脚可能落在齿顶圆附近或者齿根圆附近甚至无法测量,而用跨棒距测量  相似文献   

10.
1982一10一01实施 本标准是参考国际标准150701一1 976制 订的. 1主代号 了.窗小写罗马字母(斜体) a中心距,标准中心距 b齿宽 c顶隙 d直径,分度圆直径 e槽宽,分度圆槽宽,偏心距 h齿高,全齿高 i传动比 了侧隙 几跨越齿数,跨越槽数(用于 内齿轮)电m模数 n转数 P齿距,分度圆齿距 q蜗杆的直径系数 r半径,分度圆半径 夕齿厚,分度圆齿厚 。齿数比 v线速度,分度圆上的线速 度 x径向变位系数 刀中心距变动系数 z齿数 1.2大写罗二字母(叙体) 爪量柱魂景班的测量距 尸径节 R锥距,外锥距 甲公法线长度 1 .3斜写希腊字母(斜体) a压力角,齿形角,分度圆压…  相似文献   

11.
提出了利用CAXA软件,以图解法简化求得斜齿轮量球测量距。首先,通过齿轮基本公式,求出图解斜齿轮量球测量距M所需的基本参数;然后,运用CAXA渐开线模块绘制斜齿轮端面齿廓,再图解求得斜齿轮量球测量距;最后,通过实例具体介绍了求得量球测量距的步骤、方法和技巧,并将实例用图解法与公式计算法求得的结果进行对比,说明用CAXA软件图解求得的结果误差极小。此方法不需查渐开线函数表或用迭代方法计算,具有思路清晰、直观简明、快捷和不易出错等特点。  相似文献   

12.
介绍了一种应用于齿轮测量中心上复杂齿廓测量的新方法——啮合线齿廓测量法。该方法减小了测头在X轴方向上运动距离,有效地保证了精度范围,同时减小测头重力中心的运动及测量时间,实现了高精度测量。该方法能够有效防止齿廓基圆测量法在进行内齿轮测量时的干涉现象,同时实现小直径内齿轮(外圆直径小于10mm)的一次装卡完成齿形、齿向和齿距误差测量。  相似文献   

13.
奇数齿直齿圆柱齿轮齿顶圆直径的测量和计算   总被引:2,自引:0,他引:2  
一、前言 在机械维修工作中,经常遇到奇数齿直齿圆柱齿轮齿顶圆直径的测量问题。在测量时,因为量具直接测量到的尺寸不是齿顶圆直径d_a,而是一个齿的齿顶到对面齿间齿顶圆弦的距离H(图1)。通常齿顶圆直径d_a按下式计算: d_a=KH (1) 系数K值可从有关资料中查得。 用这种方法计算齿顶圆直径,当齿数较少时,误差较大,不能满足工作要求,而对于变位齿轮、短齿齿轮、  相似文献   

14.
在渐开线直齿轮及花键的制造检验中,经常采用滚棒跨棒距来测量弧齿厚。而滚棒直径的选择不尽一致,有正有误。在实践中,我们用下述方法求解最佳滚棒直径。 滚棒直径的计算 用滚棒测量弧齿厚时,滚棒应正处在齿形分度圆上,或者在分度圆附近,若滚棒直径过大,则滚棒在测量时离开了渐开线型面,  相似文献   

15.
渐开线斜齿轮跨球测量中,跨球直径可选多大?即:跨球直径在怎样的范围内才可以与两侧齿面同时正确切触?这个问题在以往的文献中或泛泛地给出一个粗略的范围;或是一个实际上并不正确的公式。总之,没有得到确切解决。本文给出斜齿变位(内、外)齿轮跨珠测量时,跨球直径与齿面切触点之间关系的公式;以及跨球直径的临界条件。  相似文献   

16.
无论是齿轮设计或制造、刀具设计、还是齿轮测量等工作,均需确定齿轮的分度圆弧齿厚。在一些场合,零件图上已直接标出该值及上下偏差,或给出一定弦高处的弦齿厚及偏差,这可方便地得出分度圆处的齿厚。但在许多情况下,零件图上通常给出公法线长度、跨告数或量棒距及量律直径,间接地反映分度圆的弧齿厚。如何由公法线长度或棒距值来计算分度圆弧齿厚,这就是本文所要讨论的问题。一、由公法线长度计算分度圆弦齿厚众所周知,渐开城圆柱外齿轮(以下简称齿轮)跨k个齿的公法线长度Wk是由基圆弧齿厚Sb及基节Pb两部分组成,如图1所示。由…  相似文献   

17.
对于小模数的渐开线花键或齿轮的齿厚,一般均用两根合适直径的圆柱滚棒放在花键对称(或接近对称)的两个齿槽里,测量出跨棒距尺寸,然后换算成齿厚。由于花键或齿轮的模数小,所选用的滚棒直径也相应小,这样在测量时很容  相似文献   

18.
斜齿轮螺旋角的测量在没有专门测量仪器时,如果是标准斜齿轮,可以通过测量齿顶圆和两个相啮合的斜齿轮的传动中心距计算出螺旋角来。但如果测绘对象是修正的斜齿轮,这种方法容易出错。下面介绍一种利用铣床上的分度头测量斜齿轮螺旋角的方法。 斜齿轮不同直径上的螺旋角是不一样的,但它的  相似文献   

19.
为了提高中小模数直齿圆柱齿轮视觉测量仪齿距测量精度,分析了在视觉坐标系内齿轮基圆定位偏心对齿距测量误差的影响规律。通过理论分析和仿真计算得出基圆定位偏心导致齿廓初始相位角误差的正弦曲线模型,进而研究了基圆定位偏心对齿距测量误差的影响。根据视觉测量仪相对法测量齿距原理,推导出齿距测量误差增量公式,并在齿轮视觉测量仪上对实际齿轮进行了测量实验。实验结果表明,提出的基圆定位偏心所导致的齿距测量误差增量模型具有较高的计算精度,可以用于齿轮视觉测量仪器研发时的精度分析;当偏心量e≤40μm,定位误差Δψ_j≤1°时,可以满足5级精度齿轮的测量要求;对于齿数z≥45的齿轮,可以采用双齿距测量方法来提高视觉测量效率,能够满足5级精度齿轮的测量要求。  相似文献   

20.
针对非圆齿轮齿廓复杂、测量困难这一问题,以椭圆齿轮为研究对象,采用跨棒距测量方法,研究其节曲线误差、齿厚误差、齿圈径向跳动和齿向偏差等精度指标的测量技术。通过建立椭圆齿轮跨棒距测量的数学模型,研究不同模数的椭圆齿轮的测量原理、各项误差的评判依据,以及齿轮规格与量棒型号的匹配关系,为非圆齿轮各项误差(节曲线误差、齿厚误差、齿圈径向跳动和齿向偏差)的精密测量提供一种新方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号