首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coupling adsorption and degradation of trichloroethylene (TCE) through dechlorination using synthetic granular activated carbon and zerovalent iron (GAC-ZVI) composites was studied. The GAC-ZVI composites were prepared from aqueous Fe2+ solutions by impregnation with and without the use of a PEG dispersant and then heated at 105 °C or 700 °C under a stream of N2. Pseudo-first-order rate constant data on the removal of TCE demonstrates that the adsorption kinetics of GAC is similar to those of GAC-ZVI composites. However, the usage of GAC-ZVI composites liberated a greater amount of Cl than when ZVI was used alone. The highest degree of reductive dechlorination of TCE was achieved using a GAC-ZVI700P composite (synthesized using PEG under 700 °C). A modified Langmuir-Hinshelwood rate law was employed to depict the behavior of Cl liberation. As a result, a zero-order Cl liberation reaction was observed and the desorption limited TCE degradation rate constant decreased as the composite dosage was increased. The GAC-ZVI composites can be employed as a reactive GAC that is not subject to the limitations of using GAC and ZVI separately.  相似文献   

2.
Effects of pH on dechlorination of trichloroethylene by zero-valent iron   总被引:19,自引:0,他引:19  
The surface normalized reaction rate constants (k(sa)) of trichloroethylene (TCE) and zero-valent iron (ZVI) were quantified in batch reactors at pH values between 1.7 and 10. The k(sa) of TCE linearly decreased from 0.044 to 0.009l/hm(2) between pH 3.8 and 8.0, whereas the k(sa) at pH 1.7 was more than an order higher than that at pH 3.8. The degradation of TCE was not observed at pH values of 9 and 10. The k(sa) of iron corrosion linearly decreased from 0.092 to 0.018l/hm(2) between pH 4.9 and 9.8, whereas it is significantly higher at pH 1.7 and 3.8. The k(sa) of TCE was 30-300 times higher than those reported in literature. The difference can be attributed to the pH effects and precipitation of iron hydroxide. The k(sa) of TCE degradation and iron corrosion at a head space of 6 and 10ml were about twice of those at zero head space. The effect was attributed to the formation of hydrogen bubbles on ZVI, which hindered the transport the TCE between the solution and reaction sites on ZVI. The optimal TCE degradation rate was achieved at a pH of 4.9. This suggests that lowering solution pH might not expedite the degradation rate of TCE by ZVI as it also caused faster disappearance of ZVI, and hence decreased the ZVI surface concentration.  相似文献   

3.
This study simulated benzene and toluene biodegradation down gradient of a zero-valent iron permeable reactive barrier (ZVI PRB) that reduces trichloroethylene (TCE). The effects of elevated pH (10.5) and the presence of a common TCE dechlorination by product [cis-1,2-dichloroethene (cis-1,2-DCE)] on benzene and toluene biodegradation were evaluated in batch experiments. The data suggest that alkaline pH (pH 10.5), often observed down gradient of ZVI PRBs, inhibits Fe(III)-mediated biotransformation of both benzene and toluene. Removal was reduced by 43% for benzene and 26% for toluene as compared to the controls. The effect of the addition of cis-1,2-DCE on benzene and toluene biodegradation was positive and resulted in removal that was greater than or equal to the controls. These results suggest that, at least for cis-1,2-DCE, its formation may not be toxic to iron-reducing benzene and toluene degrading bacteria; however, for microbial benzene and toluene removal down gradient of a ZVI PRB, it may be necessary to provide pH control, especially in the case of a biological PRB that is downstream from a ZVI PRB.  相似文献   

4.
Bimetallic particles are extremely interesting in accelerating the dechlorination of chlorinated organics. Four noble metals (Pd, Pt, Ru and Au), separately deposited onto the iron surface through a spontaneous redox process, promoted the TCE dechlorination rate, and the catalytic activity of the noble metal followed the order of Pd>Ru>Pt>Au. This order was found to be dependent on the concentrations of adsorbed atomic hydrogen, indicating that the initial reaction was cathodically controlled. Little difference in the distribution of the chlorinated products for the four catalysts (cis-DCE: 51%; 1,1-DCE: 27%; trans-DCE: 15% and VC: 7%) was observed. The chlorinated by-products accumulated in both Pt/Fe and Au/Fe (10.3% and 2.5% of the transformed TCE, respectively), but did not accumulate in Pd/Fe and Ru/Fe. Ru/Fe was further examined as an economical alternative to Pd/Fe. The 1.5% Ru/Fe was found to completely degrade TCE within 80 min. Considering the expense, the yield of chlorinated products and the lifetime of a reductive material, Ru provides a potential alternative to Pd as a catalyst in practical applications.  相似文献   

5.
Palladium-based nanoparticles immobilized in polymeric matrices were applied to the reductive dechlorination of 3,3',4,4'-tetrachlorobiphenyl (PCB77) at room temperature. Two different dechlorination platforms were evaluated using (1) Pd nanoparticles within conductive polypyrrole films; or (2) immobilized Fe/Pd nanoparticles within polyvinylidene fluoride microfiltration membranes. For the first approach, the polypyrrole film was electrochemically formed in the presence of perchlorate ions that were incorporated into the film to counter-balance the positive charges of the polypyrrole chain. The film was then incubated in a solution containing tetrachloropalladate ions, which were exchanged with the perchlorate ions within the film. During this exchange, reduction of tetrachloropalladate by polypyrrole occurred, which led to the formation of palladium nanoparticles within the film. For the second approach, the membrane-supported Fe/Pd nanoparticles were prepared in three steps: polymerization of acrylic acid in polyvinylidene fluoride microfiltration membrane pores was followed by ion exchange of Fe(2+), and then chemical reduction of the ferrous ions bound to the carboxylate groups. The membrane-supported iron nanoparticles were then soaked in a solution of tetrachloropalladate resulting in the deposition of Pd on the Fe surface. The nanoparticles prepared by both approaches were employed in the dechlorination of PCB77. The presence of hydrogen was required when the monometallic Pd nanoparticles were employed. The results indicate the removal of chlorine atoms from PCB77, which led to the formation of lower chlorinated intermediates and ultimately biphenyl. Toxicity associated with vascular dysfunction by PCB77 and biphenyl was compared using cultured endothelial cells. The data strongly suggest that the dechlorination system used in this study markedly reduced the proinflammatory activity of PCB77, a persistent organic pollutant.  相似文献   

6.
纳米磁性四氧化三铁的制备及表征   总被引:14,自引:0,他引:14  
采用化学共沉淀法制备了纳米磁性Fe3O4粒子.选用NH3@H2O作为沉淀剂,加入到Fe2+和Fe3+的混合溶液中,制得了纳米磁性Fe3O4粒子.考察了Fe2+和Fe3+溶液浓度、沉淀剂的浓度、Fe2+/Fe3+/OH-、温度及搅拌速度等因素对产物粒径及性能的影响,并对其进行了初步的性能表征.  相似文献   

7.
Advanced Fenton process (AFP) using zero valent metallic iron (ZVMI) is studied as a potential technique to degrade the azo dye in the aqueous medium. The influence of various reaction parameters like effect of iron dosage, concentration of H(2)O(2)/ammonium per sulfate (APS), initial dye concentration, effect of pH and the influence of radical scavenger are studied and optimum conditions are reported. The degradation rate decreased at higher iron dosages and also at higher oxidant concentrations due to the surface precipitation which deactivates the iron surface. The rate constant for the processes Fe(0)/UV and Fe(0)/APS/UV is twice compared to their respective Fe(0)/dark and Fe(0)/APS/dark processes. The rate constant for Fe(0)/H(2)O(2)/UV process is four times higher than Fe(0)/H(2)O(2)/dark process. The increase in the efficiency of Fe(0)/UV process is attributed to the cleavage of stable iron complexes which produces Fe(2+) ions that participates in cyclic Fenton mechanism for the generation of hydroxyl radicals. The increase in the efficiency of Fe(0)/APS/UV or H(2)O(2) compared to dark process is due to continuous generation of hydroxyl radicals and also due to the frequent photo reduction of Fe(3+) ions to Fe(2+) ions. Though H(2)O(2) is a better oxidant than APS in all respects, but it is more susceptible to deactivation by hydroxyl radical scavengers. The decrease in the rate constant in the presence of hydroxyl radical scavenger is more for H(2)O(2) than APS. Iron powder retains its recycling efficiency better in the presence of H(2)O(2) than APS. The decrease in the degradation rate in the presence of APS as an oxidant is due to the fact that generation of free radicals on iron surface is slower compared to H(2)O(2). Also, the excess acidity provided by APS retards the degradation rate as excess H(+) ions acts as hydroxyl radical scavenger. The degradation of Methyl Orange (MO) using Fe(0) is an acid driven process shows higher efficiency at pH 3. The efficiency of various processes for the de colorization of MO dye is of the following order: Fe(0)/H(2)O(2)/UV>Fe(0)/H(2)O(2)/dark>Fe(0)/APS/UV>Fe(0)/UV>Fe(0)/APS/dark>H(2)O(2)/UV approximately Fe(0)/dark>APS/UV. Dye resisted to degradation in the presence of oxidizing agent in dark. The degradation process was followed by UV-vis and GC-MS spectroscopic techniques. Based on the intermediates obtained probable degradation mechanism has been proposed. The result suggests that complete degradation of the dye was achieved in the presence of oxidizing agent when the system was amended with iron powder under UV light illumination. The concentration of Fe(2+) ions leached at the end of the optimized degradation experiment is found to be 2.78 x 10(-3)M. With optimization, the degradation using Fe(0) can be effective way to treat azo dyes in aqueous solution.  相似文献   

8.
Fenton's reagent is the result of reaction between hydrogen peroxide (H(2)O(2)) and ferrous iron (Fe(2+)), producing the hydroxyl radical (-*OH). The hydroxyl radical is a strong oxidant capable of oxidizing various organic compounds. The mechanism of oxidizing trichloroethylene (TCE) in groundwater and soil slurries with Fenton's reagent and the feasibility of injecting Fenton's reagent into a sandy aquifer were examined with bench-scale soil column and batch experiment studies. Under batch experimental conditions and low pH values ( approximately 3), Fenton's reagent was able to oxidize 93-100% (by weight) of dissolved TCE in groundwater and 98-102% (by weight) of TCE in soil slurries. Hydrogen peroxide decomposed rapidly in the test soil medium in both batch and column experiments. Due to competition between H(2)O(2) and TCE for hydroxyl radicals in the aqueous solutions and soil slurries, the presence of TCE significantly decreased the degradation rate of H(2)O(2) and was preferentially degraded by hydroxyl radicals. In the batch experiments, Fenton's reagent was able to completely dechlorinate the aqueous-phase TCE with and without the presence of soil and no VOC intermediates or by-products were found in the oxidation process. In the soil column experiments, it was found that application of high concentrations of H(2)O(2) with addition of no Fe(2+) generated large quantities of gas in a short period of time, sparging about 70% of the dissolved TCE into the gaseous phase with little or no detectable oxidation taking place. Fenton's reagent completely oxidized the dissolved phase TCE in the soil column experiment when TCE and Fenton's regent were simultaneously fed into the column. The results of this study showed that the feasibility of injecting Fenton's reagent or H(2)O(2) as a Fenton-type oxidant into the subsurface is highly dependent on the soil oxidant demand (SOD), presence of sufficient quantities of ferrous iron in the application area, and the proximity of the injection area to the zone of high aqueous concentration of the target contaminant. Also, it was found that in situ application of H(2)O(2) could have a gas-sparging effect on the dissolved VOC in groundwater, requiring careful attention to the remedial system design.  相似文献   

9.
Ferrous iron (Fe(II)) in combination with Portland cement is effective in reductively dechlorinating chlorinated organics and can be used to achieve immobilization and degradation of contaminants simultaneously. Reactivities of chlorinated ethylenes (perchloroethylene (PCE), trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), vinyl chloride (VC)) in Fe(II)/cement systems were characterized using batch slurry reactors. Reduction kinetics of the chlorinated ethylenes were sufficiently fast to be utilized for the proposed treatment scheme, and were described by a pseudo-first-order rate law. The order of reactivity of the chlorinated ethylenes was TCE>1,1-DCE>PCE>VC. Reduction of TCE and PCE mainly yielded acetylene, implying that the transformation of the two compounds occurred principally via reductive beta-elimination pathways. Transformation of 1,1-DCE and VC gave rise to primarily ethylene, implying that major degradation pathways were a reductive alpha-elimination for the former and a hydrogenolysis for the latter. The reactivity of the Fe(II)/cement systems in dechlorinating TCE was proportional to Fe(II) dose when the Fe(II)/cement mass ratio varied between 5.6 and 22.3%. The Fe(II)/cement systems with a higher Fe(II) loading were less extensively affected by pH in reductive reactions for TCE than in the previous experiments with PCE or chlorinated methanes. Amendment of Fe(II)/cement systems with Fe(III) addition was found effective in increasing the reactivity in the previous study, but the current findings indicated that the extent to which the reaction rate increased by the amendment might be dependent on the source of the cement and/or the compounds tested.  相似文献   

10.
Removal of trichloroethylene in reduced soil columns   总被引:1,自引:0,他引:1  
A continuous soil column experiment was conducted to investigate reductive dechlorination of trichloroethylene (TCE) in soil system reductively manipulated by three types of reductants (Fe(II), dithionite, and Fe(II) + dithionite (combined treatment of Fe(II) and dithionite)). The soil column reduced by Fe(II) + dithionite has the greatest bed volumes (51.8) treated to breakthrough indicating that the combined treatment of Fe(II) and dithionite is more effective for the reductive dechlorination of TCE in the reduced soil column than the separate treatment of Fe(II) or dithionite. The measured bed volumes to breakthrough in control and treated soil columns were similar to the estimated bed volumes based on the result of batch kinetic experiment, differing by a factor of 0.96-1.02. The relative concentration of bromide (non-reactive tracer) reached the approximate value of 1 between 0.87 and 1.03 bed volume. C2 hydrocarbons (acetylene, ethylene, and ethane) were observed as transformation products in the effluents of soil columns treated by the reductants. However, no chlorinated intermediates were observed at the concentrations above detection limits throughout the experiment. Chloride was observed in the effluents of soil columns reduced by dithionite and Fe(II) + dithionite.  相似文献   

11.
纳米钯/铁双金属颗粒对一氯乙酸的脱氯   总被引:1,自引:0,他引:1  
为了提高零价铁对氯代有机物还原脱氯的性能,采用还原沉淀法制备了纳米钯/铁双金属颗粒.利用X射线衍射(XRD)、X射线荧光光谱(XRF)、扫描电子显微镜(SEM)、透射电镜(TEM)、以及BET-N2比表面积法对纳米钯/铁双金属颗粒进行了表征.结果表明,制备的纳米钯/铁双金属颗粒中Fe主要以α-Fe0形式存在.纳米钯/铁双金属颗粒的直径约为30~50nm,比表面积约51m2/g.纳米钯/铁双金属颗粒对一氯乙酸还原脱氯的脱氯率是还原铁粉和纳米铁粉对一氯乙酸还原脱氯的脱氯率的7.9倍和1.7倍.  相似文献   

12.
We investigated the protein binding affinity of magnetite (Fe3O4) and maghemite (gamma-Fe2O3) nanoparticles with against non-characterized protein from human lung cancer A549 cell line on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The binding ability of maghemite was 400 ng/mg. According to the SDS-PAGE results, the protein binding affinity of maghemite nanoparticles is stronger than magnetite nanoparticles. These data suggest that a protein can be detected with maghemite nanoparticles.  相似文献   

13.
The reduction of dichloroethane (DCE) and trichloroethylene (TCE) by bimetallic iron–nickel (Fe–Ni) nanoparticles has been studied in this study. The reduction mechanism involves hydrodechlorination at the iron–nickel interface. The Fe–Ni nanoparticles have been synthesised by the chemical reduction method and immobilised on to a polysulphone matrix. The as-synthesised nanoparticles and Fe–Ni immobilied polysulphone support have been characterised to establish the particle size of the nanoparticles, which are of the order of 36–41?nm, and the physical characteristics of the immobilised support. Batch experiments have been performed using gas chromatography-mass spectrometry to study the degradation of DCE and TCE. The studies have shown that the bimetallic system is quite effective in the dechlorination of DCE and TCE. Also, the stability of the nanoparticles in the matrix has been explored with respect to its suitability for use in the degradation of chlorinated hydrocarbons.  相似文献   

14.
Sulfidized nanoscale zerovalent iron (SNZVI) is a promising material for groundwater remediation. However, the relationships between sulfur content and speciation and the properties of SNZVI materials are unknown, preventing rational design. Here, the effects of sulfur on the crystalline structure, hydrophobicity, sulfur speciation, corrosion potential, and electron transfer resistance are determined. Sulfur incorporation extended the nano-Fe0 BCC lattice parameter, reduced the Fe local vacancies, and lowered the resistance to electron transfer. Impacts of the main sulfur species (FeS and FeS2) on hydrophobicity (water contact angles) are consistent with density functional theory calculations for these FeSx phases. These properties well explain the reactivity and selectivity of SNZVI during the reductive dechlorination of trichloroethylene (TCE), a hydrophobic groundwater contaminant. Controlling the amount and speciation of sulfur in the SNZVI made it highly reactive (up to 0.41 L m−2 d−1) and selective for TCE degradation over water (up to 240 moles TCE per mole H2O), with an electron efficiency of up to 70%, and these values are 54-fold, 98-fold, and 160-fold higher than for NZVI, respectively. These findings can guide the rational design of robust SNZVI with properties tailored for specific application scenarios.  相似文献   

15.
Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles   总被引:8,自引:0,他引:8  
This paper examined the potential of using Pd/Fe bimetallic nanoparticles to dechlorinate chlorinated methanes including dichloromethane (DCM), chloroform (CF) and carbon tetrachloride (CT). Pd/Fe bimetallic nanoparticles were prepared by chemical precipitation method in liquid phase and characterized in terms of specific surface area (BET), size (TEM), morphology (SEM), and structural feature (XRD). With diameters on the order of 30-50 nm, the Pd/Fe bimetallic nanoparticles presented obvious activity, and were suited to efficient catalytic dechlorination of chlorinated methanes. The effects of some important reaction parameters, such as Pd loading (weight ratio of Pd to Fe), Pd/Fe addition (Pd/Fe bimetallic nanoparticles to solution ratio) and initial pH value, on dechlorination efficiency were sequentially studied. It was found that the maximum dechlorination efficiency was obtained for 0.2 wt% Pd loading. The dechlorination efficiency was observed to increase with increasing Pd/Fe addition. The optimal pH value for dechlorination reaction of chlorinated methanes was about 7. Kinetics of chlorinated methane dechlorination in the catalytic reductive system of Pd/Fe bimetallic particles were investigated. The dechlorination reaction complied with pseudo-first-order kinetics.  相似文献   

16.
In this work, the effect of incorporation of M2+ species, i.e. Co2+, Mn2+ and Ni2+, into the magnetite structure to increase the reactivity towards H2O2 reactions was investigated. The following magnetites Fe3-xMnxO4, Fe3-xCoxO4 and Fe3-xNixO4 and the iron oxides Fe3O4, gamma-Fe2O3 and alpha-Fe2O3 were prepared and characterized by M?ssbauer spectroscopy, XRD, BET surface area, magnetization and chemical analyses. The obtained results showed that the M2+ species at the octahedral site in the magnetite strongly affects the reactivity towards H2O2, i.e. (i) the peroxide decomposition to O2 and (ii) the oxidation of organic molecules, such as the dye methylene blue and chlorobenzene in aqueous medium. Experiments with maghemite, gamma-Fe2O3 and hematite, alpha-Fe2O3, showed very low activities compared to Fe3O4, suggesting that the presence of Fe2+ in the oxide plays an important role for the activation of H2O2. The presence of Co or Mn in the magnetite structure produced a remarkable increase in the reactivity, whereas Ni inhibited the H2O2 reactions. The obtained results suggest a surface initiated reaction involving Msurf2+ (Fe, Co or Mn), producing HO radicals, which can lead to two competitive reactions, i.e. the decomposition of H2O2 or the oxidation of organics present in the aqueous medium. The unique effect of Co and Mn is discussed in terms of the thermodynamically favorable Cosurf3+ and Mnsurf3+ reduction by Femagnetite2+ regenerating the active species M2+.  相似文献   

17.
The dextran-based nanoparticles containing carboxyl groups were synthesized by a one-pot approach, without using any organic solvents and surfactants. The resultant dextran-based nanoparticles was used as a host for the growing and organization of Fe(3)O(4) nanoparticles. The approach consists of the mixture of ferrous/ferric ions aqueous solution and host nanoparticles and subsequent coprecipitation of ferrous/ferric ions in basic medium. The magnetic nanocomposite material obtained was characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), X-ray diffraction techniques (XRD) and vibrating sample magnetometry (VSM). The data demonstrate that the carboxyls which can capture cationic ferrous/ferric by electronic interaction in the dextran-based hosts plays a crucial role in fabricating nanocomposites with a homogeneous spatial distribution of magnetite nanoparticles. The magnetic nanocomposites exhibit comparable saturation magnetizations to that of reported Fe(3)O(4) nanoparticles, and therefore display great potential in a large scope of biomedical fields.  相似文献   

18.
Permeable iron barriers have become a popular choice as a passive, cost-effective in situ remediation technology for chlorinated solvents. However, loss of reactivity over time, due to a build up of corrosion products or other precipitates on the iron surface, is a great concern. Because first-order rate constants for trichloroethylene (TCE) degradation have differed by iron pre-treatment and sonication history, X-ray photoelectron spectroscopy (XPS) was used to explore the changes in near surface chemistry of several iron samples. Both sonicated and unsonicated filings were analyzed in unwashed and groundwater-soaked conditions. Unsonicated acid-washed iron, with the highest first-order rate constant for TCE degradation, was characterized by greater surface oxygen content and was more ionic relative to the unwashed samples. The unsonicated, unwashed sample, with the lowest rate constant, exhibited a mixture of nonstoichiometric iron oxide and oxyhydroxide species. Sonication of groundwater-soaked iron removed weakly bonded iron hydroxide species and decreased the ionic character of the surface as was observed in the unwashed samples. Thus, this type of study might provide a better understanding of the chemical reactivity of selected iron samples and design better material in remediation technology.  相似文献   

19.
To study the photodegradation of organic pollutants at the interface of minerals and water in natural environment, three series of alumina-coupled iron oxides (Al(2)O(3)-Fe(2)O(3)-300, Al(2)O(3)-Fe(2)O(3)-420, and Al(2)O(3)-Fe(2)O(3)-550) with different alumina fraction were prepared and characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halender (BJH), and Fourier transform infrared spectra (FTIR). The XRD results showed that existence of alumina in iron oxides could hinder the formation of maghemite and hematite, and also the crystal transformation from maghemite to hematite during sintering. It has been confirmed that the BET surface area and micropore surface area of Al(2)O(3)-Fe(2)O(3) catalysts increased with an increased dosage of alumina and with decreased sintering temperature. The pore size distribution also depended on the fraction of alumina. Furthermore, all Al(2)O(3)-Fe(2)O(3) catalysts had a mixed pore structure of micropore, mesopore and macropore. FTIR results showed that FTIR peaks attributable to Fe-O vibrations of maghemite or hematite were also affected by alumina content and sintering temperature. It was confirmed that the crystal structure and crystalline, the surface area and pore size distribution of Al(2)O(3)-Fe(2)O(3) catalysts depend strongly on the content of alumina and also sintering temperature. Bisphenol A (BPA) was selected as a model endocrine disruptor in aquatic environment. The effects of alumina on the photocatalytic activity of iron oxides for BPA degradation were investigated in aqueous suspension. The experimental results showed that the dependence of BPA degradation on the alumina content was attributable to the crystal structure, crystalline and also the properties of their surface structures. It was confirmed that the mixed crystal structure of maghemite and hematite could achieve the higher photocatalytic activity than maghemite or hematite alone.  相似文献   

20.
Trinitrotoluene (TNT), a nitroaromatic explosive, is a commonly encountered groundwater contaminant in the United States that can pose a human health risk, even at very low aqueous concentrations. This study describes the process characteristics of abiotic degradation of dissolved TNT in the presence of ferrous iron (Fe2+) and six different minerals-processes relevant to a more complete understanding of reduced iron technologies in TNT cleanup. Kinetic degradation batch reactions involving combinations of TNT, ferrous iron, six minerals with varying cation exchange capacity, and two pH buffers were performed. The rate of TNT degradation was quantified using high performance liquid chromatography (HPLC). Unbuffered reactions between TNT, Fe2+, and magnetite, pyrite, quartz, and goethite/quartz were insignificant. However, unbuffered reactions between TNT, Fe2+, and calcite and siderite proceeded rapidly to completion. The difference in reaction rates was attributable to the elevated pH in the presence of the latter minerals. For reactions performed in buffered systems with pH 7.4, degradation followed a second-order kinetics rate law. For reactions in buffered systems with pH 9.0, the reactions proceeded to completion almost instantaneously. The presence of the mineral solid surface was necessary for TNT reduction to proceed, with the most rapid reaction rates occurring in the presence of a suspected hydroxy solid phase that formed at high pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号