首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
燃气轮机服役过程中,热障涂层(以下简称涂层)内部裂纹萌生和扩展是导致涂层失效的主要原因。通过数值重构方法获得了含不同长度裂纹的热障涂层(TBCs)微结构,基于耦合双分布格子波尔兹曼方法(DDF-LBM)建立了热障涂层与冷却气膜流动传热模型,研究了热障涂层内部和表面温度分布特性。结果表明:出现裂纹会极大地改变涂层的温度分布情况,增加涂层温度不均匀性,造成局部烧结,进一步产生应力集中,极易导致涂层分层断裂,从而影响其耐久性。同时,基于耦合检测算法(GEMSS)通过大量机器学习训练,提出了热障涂层内裂纹定位和长度估算的在线检测评估方法。该方法能有效确定裂纹位置,高精度估算裂纹长度,为高温叶片在线健康度评估和寿命预测提供理论基础和技术支撑。  相似文献   

2.
In this article, a fracture mechanics model for functionally graded materials (FGMs) with general thermomechanical properties and collinear cracks under thermal loading is proposed. Assuming the thermomechanical properties of FGM strip to be general continuous functions of the coordinate in the thickness direction, the FGM strip is divided into a multilayered medium with the thermomechanical properties varying exponentially in each layer. Using the superposition method, the problem is reduced to a perturbation problem in which the crack surface tractions are the only external forces. Finally, the crack problem is reduced to integral equations with generalized Cauchy kernel and solved numerically. Some typical examples are discussed and the thermal stress intensity factors (TSIFs) for the collinear cracks are presented. The influences of the geometry parameters and the interaction between both collinear cracks on the TSIFs are discussed. Some important conclusions are drawn.  相似文献   

3.
Mechanically and thermomechanically stressed interface cracks in adhesively bonded bimaterials (PMMA-aluminum) with a large elastic and thermal property mismatch are experimentally studied. The elasto-optic effects are mapped as (sigmax+sigmay) contours in the PMAA halves and interfacial fracture parameters are estimated. Crack initiation under mechanical and thermomechanical loading conditions are shown to be controlled by different micromechanical processes. The results suggest that the micromechanical unlocking of microcavities and microprotrusions along the interface is primarily responsible for failure initiation under thermomechanical loading conditions. This is unlike the mechanical loading situations wherein fracture toughness is derived primarily from the breakage of interlocking microentanglements. The measured values of the fracture parameter DeltaIm(Kaiepsilon)T due to a temperature rise is a constant and much higher than its real counterpart (DeltapsiT (a) approxequal 76-82 degrees). The Delta(Kaiepsilon)T|cr thus obtained are much lower than the mechanical counterparts.  相似文献   

4.
Two-crack propagation paths in a ceramic/metal functionally graded material plate (FGP) under one-cycle temperature change of heating and cooling are considered. When the FGP is subjected to thermal shock, a single crack or multiple cracks often initiate on the ceramic surface during the cooling process and propagate in the FGP. Crack paths are influenced by the heating temperature conditions, a compositional profile of the FGP, the fracture toughness, interaction among multiple cracks, and so on. Transient thermal stresses are treated as a linear quasi-static thermoelastic problem for a plane-strain state. The crack paths are treated under fracture mechanics using the finite-element method. The effects of heating temperature conditions, a compositional profile of the FGP, the fracture toughness, and a crack space on the crack propagation pattern are discussed and are shown in figures.  相似文献   

5.
S. Ueda 《热应力杂志》2013,36(11):1021-1041
The plane elasticity solution is presented in this article for the crack problem of a W-Cu divertor plate under thermal shock. The material is made of a graded layer with exponentially varying thermomechanical properties bonded between a homogeneous substrate and a homogeneous coating and is subjected to a cycle of heating and cooling on the coating surface of the material. The surface layer contains an embedded or a surface crack perpendicular to the boundaries. Using superposition the problem is reduced to a perturbation problem in which the crack surface tractions are only external forces. The dimensions, geometry, and loading conditions of the original problem are such that the perturbation problem may be approximated by a plane strain mode I crack problem for an infinite divertor plate. Fourier transforms are used to formulate the crack problem in terms of a singular integral equation. After giving some sample results regarding the distribution of thermal stresses, stress intensity factors for embedded and surface cracks are presented. Also included are the results for a crack/contact problem in a divertor plate that is under compression near and at the surface and tension in the interior region.  相似文献   

6.
The transient thermal stress crack problem for a half-space with a multilayer coating under thermal surface loading containing an undercoat crack, perpendicular to the interface, is considered. The problem is solved using the principle of superposition and uncoupled quasi-static thermoelasticity. Transient temperature distribution and corresponding thermal stresses for the uncracked multilayer assembly are obtained in a closed analytical form using the model with generalized thermal boundary conditions of heat exchange of a half-space with ambient media via the coating. The crack problem is formulated as a perturbation mixed boundary value problem, in which the crack surface loading should be equal and opposite to the thermal stresses obtained for the uncracked medium, and is reduced to a singular integral equation and solved numerically. Numerical computations are performed for the analysis of influence of the coating upon thermal stresses and thermal stress intensity factor.  相似文献   

7.
We determine two-dimensional temperature and thermal stresses distributions in a semiconductor coating-substrate assembly caused by the heat source at the contact surface. The analysis is based on the Laplace and Hankel integral transforms of equations of thermal elasticity, and the obtained analytical solutions can be used without any limitations on the duration of heating, the thickness of a coating, mechanical and thermal characteristics of materials. We consider the effect of the thickness of a coating, thermal mismatch between the substrate and the coating on the magnitude of thermal stresses. Using the obtained thermal stress distribution we analyze the delamination failure at the substrate-coating interface.  相似文献   

8.
J. Wang 《热应力杂志》2013,36(5):629-642
The present work aims to investigate the effect of interfacial thermal resistance on thermal fracture behavior of bonded and composite materials. We consider a sub-interface crack parallel to the interface between two semi-infinite dissimilar plates subjected to remote heat flux thermal loading. A constant thermal resistance is assumed to exist along the interface. The temperature distribution along the crack, the thermal stress intensity factors (TSIFs), and the crack opening/sliding displacements (COD/CSD) are obtained using an integral transform/superposition method. The numerical results for Al2O3/Si3N4 bimaterial systems show that the magnitude of the mode I TSIF generally decreases with increasing thermal resistance of the interface but increases with increasing thermal resistance for cracks that are very close to the interface. On the other hand, the model II TSIF increases with increasing thermal resistance if the crack is in the Al2O3 semi-infinite plate, and decreases if the crack is in the Si3N4 semi-infinite plate. The COD/CSD are also significantly influenced by the thermal resistance of the interface.  相似文献   

9.
Yan Song  Xin Zhuan  Xi Chen 《热应力杂志》2013,36(12):1390-1415
Thermal stress in the fabrication process of thermal barrier coating system (TBCs) has a significant effect on the quality of TBCs and the durability of gas turbine. In this work, a new analytical model was developed to calculate the thermal stress during the fabrication process of TBCs. Variations of the material properties with temperature of TBCs were well considered in the present model. Several spraying factors: such as pre-heating temperature, cold gas dynamic spraying (CGDS) method, thickness of top coating and thickness of substrate, which has significant effects on thermal stress generation, are also discussed in this work.  相似文献   

10.
We consider the transient thermal singular stresses of multiple cracking in a functionally graded divertor plate due to a thermal shock. The plate is made of a graded layer bonded between a homogeneous substrate and a homogeneous coating, and it is subjected to a cycle of heating and cooling on the coating surface of the plate. The surface layer contains a parallel array of embedded or edge cracks perpendicular to the boundaries. The thermal and elastic properties of the material are dependent on the temperature and the position. Finite element calculations are carried out, and the transient thermal stress intensity factors are shown graphically.  相似文献   

11.
The problem considered in this article is the response of a graded composite material plate containing some noncollinear cracks subjected to dynamic thermal loading. It is assumed that all the material properties depend only on the coordinates y (along the thickness direction) . In the analysis, graded regions are treated as a series of perfectly bonded composite layers, each layer being assigned slightly different material properties. Utilizing the Laplace transform and Fourier transform techniques, the general solution for each layer is derived. The complete solution of the entire medium is then obtained by introducing the mechanical boundary and layer interface conditions. The main features of the proposed method are: (1) the material may be orthotropic, (2) multiple crack problem, (3) the material properties may vary arbitrarily along the thickness direction, and (4) with the inertial terms taken into account, the present algorithm can be applied to a fracture problem under dynamic mechanical loading. Numerical examples are provided for a FGM and a substrate FGM coating structure under a nonuniform heating condition. Transient and steady-state thermal stress intensity factors are calculated and their variation due to a change of the material gradient and the location of the crack are studied.  相似文献   

12.
Abstract

This article demonstrates conditions of stress-free deformation of anisotropic FGM interface under thermal loading. Existence of such a deformation is theoretically possible in the case of constant temperature, reduction of the covariant differential along direction of functional gradation to the partial differential, and simultaneously the linear gradation of thermal expansion tensor. Nevertheless, two examples of engineering structures, a thick three-layer plate and a thick-walled cylinder, show that either the compatible deformation of three-layer structure or an application of the curvilinear interface results in stress state appearance. Both examples under consideration take the advantage of an alumina-based composite Al-Al2O3, the thermomechanical properties of which are subjected to transverse isotropy.  相似文献   

13.
A coupled thermomechanical model is established for multilayered structure subjecting to heat deposition, and specified for a thermal barrier system. The thermomechanical interaction including the C-V (Cattaneo–Vernotte) model of heat conduction law for the homogeneous linear thermoelastic material is developed, in which the Non-Fourier heat conduction law and the influence of stress and strain to heat transfer are taken into account. The variation of thermal stress with the heat wave due to the coupled relationship is quite significant. Under a pulse heat deposition on the surface, a model thermal barrier system's (trilayer structure) transient thermal and stress fields are investigated. The result indicates that a high tensile stress is developed, especially near the interface between ceramic coating and oxide layer, which is the most likely damage region, and the failure mechanism is related to the propagation of the coupled thermal-mechanical wave. The maximum stress in the oxide layer is affected by the size of material system.  相似文献   

14.
Numerical investigations were carried out to assess the integrity of reactor pressure vessels under pressurised thermal shock (PTS). The 4-loop reactor pressure vessel with cladding was subjected to thermo-mechanical loading owing to loss of coolant accident. The loss of coolant accident corresponding to small break as well as hot leg breaks were considered separately, which led to axisymmetric and asymmetric thermal loading conditions respectively. Three different crack configurations, 360° circumferential part through, circumferential semi-elliptical surface and circumferential semi-elliptical under-clad cracks, were postulated in the reactor pressure vessel. Finite element method was used as a tool for transient thermo-elastic analysis. The various fracture parameters such as crack mouth opening displacement (CMOD), stress intensity factor (SIF), nil ductility transition temperature (RTNDT) etc. were computed for each crack configuration subjected to various type of loading conditions. Finally for each crack a fracture assessment was performed concerning crack initiation based on the fracture toughness curve. The required material RTNDT was evaluated to avoid crack initiation.  相似文献   

15.
As gas turbine entry temperature (TET) increases, thermal loading on first stage blades increases and, therefore, a variety of cooling techniques and thermal barrier coatings (TBCs) are used. In the present work, steady state blade heat transfer mechanisms were studied via numerical simulations. Convection and radiation to the blade external surface were modeled for a super alloy blade with and without a TBC. The effects of surface emissivity changes, partial TBC coatings and uncertainties in external heat transfer coefficient were also simulated. The results show that at 1500 K TET, radiation heat transfer rate from gas to an uncoated blade is 8.4% of total heat transfer rate which decreases to 3.4% in the presence of a TBC. The TBC blocks radiation, suppresses metal temperatures and reduces heat loss to the coolant. These effects are more pronounced at higher TETs. With selective coating, substantial local temperature suppression occurs. In the presence of radiation and/or TBC, the uncertainties in convection heat transfer coefficient do not have a significant effect on metal temperatures.  相似文献   

16.
This article presents a technical review on the effects of thermal loads evolved at the wheel–rail–brake contact interfaces. These dynamic contact interfaces develop heat transfer conditions of widely varied thermal level. Their modeling to identify the sources for a variety of defect formation, observable on wheel tread or rail surface, is very important. The railway system, in general, has to bear axle load, friction load, and thermal load arising from their contact conditions in addition to traction and dynamic loads. The defects arising from the interaction of thermal load and other loadings may be identified as hot spots, shelling, spalling, rolling contact fatigue (RCF), and corrugation. The mechanisms for the formation of such defects are pivoted over the existing thermal environment of dynamic interacting surfaces. This review summarizes the works of early investigations and recent advances in modeling the heat transfer conditions required to estimate the temperature distribution at the contact zone. The heat partitioning method for both drag and stop braking conditions, in the presence of rail chill effect, is emphasized. Thermal gradient, introduced by localized temperature rise in the contact zone, in the presence of variable friction coefficient, promotes the RCF process. These alter the residual stresses in the contact region to cause a structural shakedown, aggravate plastic flow and activates ratchetting phenomenon in rails. The evolution of thermomechanical surface and subsurface fatigue cracks are also discussed for the completeness of this article. The effect of all such defect formation, emerging from thermal loading condition, and their countermeasures for defect mitigation are presented in this review. This abridged technical documentation envisions attracting more research in the area to improve wheel–rail set design and performance standards to extend enhanced safety and comfort to rail transport operation. It is opined that the thermomechanical loading, their effects on promoting defect formation and propagation should be studied in combination instead of the current practice of treating them separately.  相似文献   

17.
The high-performance carbon fiber materials can be obtained by decomposing carbon fiber reinforced resin matrix composites using thermally activated oxide semiconductors. This paper established the representative volume element (RVE) of carbon fiber/epoxy resin composites, and investigated the structure destruction of composites in the recycling process based on analysis of the stress and strain distribution by the thermomechanical coupling module of Digimat. The results indicated that the maximum thermal stress of the epoxy resin appeared in the poor resin region, while the minimum appeared in the resin-rich region; the stress of the carbon fibers in poor resin region was greater than that in the resin-rich region; the maximum stress of composites appeared in the interface layers when the temperature ranged from 350 to 500?°C, and the maximum thermal stress was 196.9–281.3?MPa, as well as the maximum shear stress was 98.2–140.3?MPa; the maximum peeling stress perpendicular to the fiber directions was 53.7–157.3?MPa; the strain of the interface layers and carbon fibers were the smaller than that of the resin matrix, whose maximum strain ranged from 0.0622 to 0.0889. The structure destruction of the composites was caused by both the peeling stress and the interfacial shear stress in recycling.  相似文献   

18.
Abstract

In this paper, the fracture problem of an axisymmetric crack in a functionally graded thermal barrier coating (FGTBC) bonded to a homogeneous substrate is considered. The problem is solved for the laminate that is suddenly heated from the upper surface of the FGTBC. The bottom surface of the homogeneous substrate is maintained at the initial temperature. The crack faces are supposed to be completely insulated. Material properties are assumed to be exponentially dependent on the distance from the interface. By using both the Laplace and Hankel transforms, the thermo-mechanical fracture problem is reduced to a singular integral equation and a system of singular integral equations which are solved numerically. The stress intensity factors of the crack are computed and presented as functions of the normalized time for various values of the nonhomogeneous and geometric parameters.  相似文献   

19.
This article describes recent developments of the thermal barrier sensor concept for nondestructive evaluation (NDE) of thermal barrier coatings (TBCs) and on-line condition monitoring in gas turbines. New and enhanced instrumentation to measure surface temperature distributions and heat flux and to monitor TBC health are regarded as a priority by the industry. The authors have proposed thermal barrier sensor coatings (TBSCs) as a possible means of achieving such measurements. TBSCs are made by doping the ceramic material (currently yttria-stabilized zirconia) with a rare earth activator to provide the coating with luminescence when excited with ultraviolet (UV) light. The article describes the physics of the thermoluminescent response of such coatings and shows how this can be used to measure temperature. Calibration data are presented from a coating produced using a production standard spray system. Also discussed is the manufacture of functionally structured coatings with discreet doped layers. The temperature at the bond coat interface is important with respect to the life of the coating since it influences the growth rate of the thermally grown oxide layer, which in turn destabilizes the coating system as it becomes thicker. Preliminary experimental data are presented that indicate that dual-layered TBSCs can be used to detect luminescence from, and thereby the temperature within, subsurface layers. A theoretical analysis of the data has allowed some preliminary calculations of the transmission properties of the overcoat to be made, and these suggest that it might be possible to observe phosphorescence and measure temperature through an overcoat layer of up to approximately 1.33 mm thickness.  相似文献   

20.
An innovative design of a mobile thermal battery resembling the solar receiver is presented. A ternary salt mixture consisting of 52% KNO3, 18% NaNO3, and 30% LiNO3 by wt% is used as the thermal energy storing medium inside the thermal battery. Since the thermal conductivity of the ternary salt mixture is low, aluminum meshes are introduced to create a thermal conduction tree inside the thermal energy storing medium. The actual field data are used in the simulations to resemble the solar irradiation emanating from the parabolic trough and focusing onto the thermal battery outer surface. To improve the uniform heating at the outer surface, the thermal battery rotation along the centerline of the trough is considered. The temperature parameter is introduced to assess the uniform‐like temperature distribution inside the ternary salt mixture. It is found that the use of aluminum meshes improves the heat diffusion in the phase change material of the ternary salt mixture; in which case, it acts like a thermal conduction tree inside the thermal battery. The rotation of the thermal battery results in uniform‐like temperature distribution across the thermal battery cross section and suppresses the excessive temperature rise because of the local heating in the close region of the thermal battery outer surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号