首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
S. Ueda 《热应力杂志》2013,36(12):1107-1125
This paper investigates the electromechanical fracture behavior of a normal crack in a piezoelectric material strip subjected to a uniform heat flow far away from the crack region. The crack faces are supposed to be insulated thermally and electrically. By using the Fourier transform, the thermal and electromechanical problems are reduced to singular integral equations, respectively, which are solved numerically. Both the cases of an internal crack and an edge crack are studied. Numerical calculations are carried out, and detailed results are presented to illustrate the influence of the crack location and length on the temperature distribution and the stress intensity factors.  相似文献   

2.
S. Ueda 《热应力杂志》2013,36(10):973-994
In this study, the theoretical analysis of a transient piezothermoelastic problem is developed for a piezoelectric strip with a parallel crack under static electric loading and thermal shock loading conditions. The crack faces are supposed to be insulated thermally and electrically. By using both the Laplace transform and the Fourier transform, the thermal and electromechanical problems are reduced to a system of singular integral equations, respectively, which are solved numerically. Some numerical results for the temperature change, the stress and electric displacement distributions, and the energy density factor as well as the stress and electric displacement intensity factors in a transient state are shown in figures.  相似文献   

3.
Modern materials such as magneto-electro-elastic materials are used in the development of smart structures. The magneto-electro-elastic materials possess the dual features that the application of electric field induces magnetization and magnetic field induces electric polarization. The theory of linear magneto-electro-elasticity is applied to solve transient thermal fracture in magneto-electro-elastic cylinder under sudden heating on its outer surface. The equilibrium equations are obtained from the constitutive equations. The governing partial differential equations are deduced by using equilibrium equations of elastic, electric and magnetic fields. The heat conduction equation is solved by separation of variable technique. Hankel transform is applied to solve elastic displacements, electric potential and magnetic potential. The problem is reduced into integral equation involving Bessel functions which is treated exactly using Abel's integral equation. Transient distributions of temperature, stress, displacement and magnetic inductions are derived for magneto-electro-elastic cylinder. Thermal stress, electric displacement and magnetic induction-intensity factors are obtained. The solutions are valid for both impermeable and permeable crack models. The studies are valuable for such material analysis and design.  相似文献   

4.
S. Ueda  A. Ishii 《热应力杂志》2013,36(10):976-990
This work is concerned with the thermoelectromechanical fracture behavior of two parallel cracks of different lengths in a piezoelectric material strip under thermal loading. The crack faces are assumed to be insulated thermally and electrically. Fourier transform techniques are used to reduce the mixed boundary value problems to two systems of singular integral equations. Numerical calculations are carried out, and detailed results are presented to illustrate the influence of the geometric parameters on the thermal stress and electric displacement intensity factors.  相似文献   

5.
In this article, thermo-electro-elastic fracture behavior of two parallel cracks in arbitrary positions of a piezoelectric material strip under thermo-electric loadings is considered. The crack faces are assumed to be insulated thermally and electrically. Fourier transform techniques are used to reduce the mixed boundary value problems to two systems of singular integral equations. Numerical calculations are carried out, and detailed results are presented to illustrate the influence of the geometric parameters on the stress and electric displacement intensity factors. The results for the temperature and electro-elastic fields are also included.  相似文献   

6.
This work is concerned with the thermoelectromechanical fracture behavior of two parallel cracks of different lengths in a piezoelectric material strip under thermal shock loading. The crack faces are supposed to be insulated thermally and electrically. By using both the Laplace transform and the Fourier transform, the thermal and electromechanical problems are reduced to two systems of singular integral equations, respectively, which are solved numerically. A numerical method is employed to obtain the time dependent solutions by way of a Laplace inversion technique. The intensity factors versus time for various geometric parameters are calculated and presented in graphical forms. Temperature change, the stress and electric displacement distributions in a transient state are also included.  相似文献   

7.
A partial contact zone model is developed for the stress and electric displacement fields due to the obstruction of a uniform heat flux by an electrically impermeable crack in piezoelectric materials. Green's function method is used to reduce the problem to a set of singular integral equations that are solved in closed form. When the crack is assumed to be traction free, the crack opening displacement is found to be negative over one-half of the crack unless a sufficiently large far field tensile stress is superposed. The problem is reformulated assuming a contact zone at one crack tip. The extent of this zone, the stress and electric displacement intensity factors at each crack tip are obtained as functions of the applied mechanical stress and heat flux.  相似文献   

8.
S. Ueda 《热应力杂志》2013,36(7):731-752
Effects of crack surface conductance on intensity factors for a functionally graded piezoelectric material under thermal load are investigated. The heat flux through the crack is assumed to be proportional to the local temperature difference. Moreover, two models for more realistic crack face electric boundary conditions are proposed. By using the Fourier transform, the thermal and electromechanical problems are reduced to a singular integral equation and a system of singular integral equations, respectively, which are solved numerically. Detailed results are presented to illustrate the influence of the thermal and electric conductance on the stress and electric displacement intensity factors.  相似文献   

9.
10.
A hybrid numerical method of the Laplace transformation and the finite difference is applied to solve the transient heat transfer problem of a gun barrel, in which the interlayer thermal contact resistance between the steel cylinder and the chrome coating is taken into account in the boundary conditions. The general solutions of the governing equations are first solved in the transform domain. Then the inversion to the real domain is completed by the method of Fourier series technique. The transient distributions of temperature and thermal stresses for the gun barrel in the real domain are calculated numerically.  相似文献   

11.
S. Ueda 《热应力杂志》2013,36(4):321-342
In this paper, the mixed-mode thermoelectromechanical fracture problem for a functionally graded piezoelectric material (FGPM) strip is considered. It is assumed that the thermoelectroelastic properties of the strip vary continuously along the thickness of the strip, and that the strip is under the thermoelectric loadings. The crack faces are supposed to be insulated thermally and electrically. The problem is formulated in terms of a system of singular integral equations. The stress and electric displacement intensity factors are presented for various values of dimensionless parameters representing the crack size, the crack location, and the material nonhomogeneity.  相似文献   

12.
This article deals with a control problem of a thermal stress in a composite circular disk consisting of a transversely isotropic structural layer onto which multiple piezoelectric layers with concentrically arranged electrodes are perfectly bonded. When a prescribed heating temperature distribution acts on the structural layer surface, the optimum structure design of the composite disk is performed so that the maximum thermal stress in the structural layer is minimized subject to constraints on stresses in the piezoelectric layers. A hybrid optimization technique combining the particle swarm optimization with the simplex method is employed for solving the optimum design problem. To resolve the difficulty in solving the problem with many optimization variables, three improvements are added to the hybrid optimization technique and an efficient design method is introduced. For a composite disk constructed of a CFRP layer and cadmium selenide layers, the layer thicknesses, the electrode dimensions, and the voltages applied to the electrodes are determined and the numerical results are presented in tabular and graphical forms. Finally, it is shown from the optimum design results that the highest suppression ratio of the maximum thermal stress reaches 40.8% in the case of a five-layer composite disk and is considered to be almost saturated.  相似文献   

13.
S. Ueda 《热应力杂志》2013,36(2):125-143
The thermoelectromechanical fracture problem for a symmetrical functionally graded piezoelectric strip containing a center crack parallel to the free boundaries is considered in this study. It is assumed that the thermoelectroelastic properties of the medium vary continuously in the thickness direction, and that the strip is under thermomechanical loadings. The crack faces are supposed to be insulated thermally and electrically. By using the Fourier transform, the thermal and electromechanical problems are reduced to singular integral equations, respectively, which are solved numerically. Numerical calculations are carried out, and detailed results are presented to illustrate the influence of the crack length and the material nonhomogeneity on the temperature-stress distributions and the stress intensity factor.  相似文献   

14.
S. Ueda  T. Ueda 《热应力杂志》2013,36(10):1027-1055
In this article, the problem of two parallel axisymmetric cracks in a plate of a functionally graded piezoelectric material (FGPM) strip is analyzed under transient thermal loading conditions. It is assumed that the thermoelectroelastic properties of the strip vary continuously along the thickness of the strip, and that the crack faces are supposed to be insulated thermally and electrically. By using both the Laplace and Hankel transforms, the thermal and electromechanical problems are reduced to two systems of singular integral equations. The singular integral equations are solved numerically, and a numerical method is then employed to obtain the time dependent solutions by way of a Laplace inversion technique. Systematic numerical calculations are carried out, and the field intensity factors versus time are presented for various values of dimensionless parameters representing the crack geometry and the material non-homogeneity.  相似文献   

15.
S. Ueda  N. Nishimura 《热应力杂志》2013,36(11):1079-1098
A thermoelectroelastic problem of a functionally graded piezoelectric material (FGPM) strip containing an annular crack is solved. It is assumed that the thermoelectroelastic properties of the strip vary continuously along the thickness of the strip, and that the strip is under the thermoelectric loadings. The crack faces are supposed to be insulated thermally and electrically. Using integral transform techniques, the problem is reduced to that of solving a singular integral equation and a system of singular integral equations. Numerical calculations are carried out, and the variations of the stress and electric displacement intensity factors are plotted against the geometric parameters for some values of the material non-homogeneity parameters.  相似文献   

16.
S. Ueda  Y. Uemura 《热应力杂志》2013,36(10):1005-1023
This paper investigates the thermoelectromechanical interaction among multi parallel cracks in a piezoelectric material under a uniform heat flow and a uniform mechanical load far away from the crack region. The crack faces are supposed to be insulated thermally and electrically. By using the Fourier transform, the thermal and electromechanical problems are reduced to systems of singular integral equations, respectively. The singular integral equations are solved numerically. Numerical calculations are carried out, and detailed results are presented to illustrate the influence of the thermoelectromechanical interaction on the stress and electric displacement intensity factors.  相似文献   

17.
S. Ueda  H. Kondo 《热应力杂志》2013,36(3):211-232
A crack in a plate of a functionally graded piezoelectric material is studied under thermal shock loading conditions. The crack faces are supposed to be completely insulated. All material properties are assumed to be exponentially dependent on the distance from the crack line parallel to the boundaries of the plate. By using both the Laplace transform and Fourier transform, the thermal and electromechanical problems are reduced to a singular integral equation and a system of singular integral equations that are solved numerically. The stress and electric displacement intensity factors vs. time for various material constants and geometric parameters are calculated.  相似文献   

18.
Using the Stroh formalism combined with the analytical continuation principle of Muskhelishvili, the Green's functions for a line heat source in a piezoelectric solid with a parabolic boundary are obtained in closed form. The obtained Green's functions not only satisfy all the given boundary conditions, but also ensure the displacement and electric potential to be single-valued. As special cases, the solutions for a piezoelectric half-plane are also presented, and they are shown to be consistent with previous works.  相似文献   

19.
The present paper deals with the determination of displacement and thermal stresses in a thin hollow circular disk defined by a ≤ r ≤ b due to internal heat generation within it. Time dependent heat flux Q(t) is applied at the outer circular boundary (r = b), whereas inner circular boundary (r = a) is at zero heat flux. Also, initially the circular disk is at arbitrary temperature F(r). The governing heat conduction equation has been solved by the method of integral transform technique. The radial stress function σrr is zero at inner and outer circular boundaries (r = a and r = b). The results are obtained in a series form in terms of Bessel's functions. The results for displacement and stresses have been computed numerically and illustrated graphically.  相似文献   

20.
This article is concerned with the determination of temperature and thermal deflection in a thin hollow circular disk under an unsteady-state temperature field due to internal heat generation within it. Initially, the disk is kept at an arbitrary temperature F(r, z). For times t > 0 heat is generated within the thin hollow circular disk at a rate of g(r, z, t) Btu/hr ft3, while the boundary surfaces at (r = a), (r = b), (z = 0) and (z = h) are kept at temperatures f 1(z, t) and f 2(z, t), f 3(r, t) and f 4(r, t), respectively. The governing heat conduction equation has been solved by using a finite Hankel transform and the generalized finite Fourier transform. The results are obtained in series form in terms of Bessel's functions. As a special case, different metallic disks have been considered. The results for temperature change and the thermal deflection have been computed numerically and illustrated graphically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号