首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, thermal instability of shallow spherical shells made of functionally graded material (FGM) is considered. The governing equations for a thin spherical shell based on the Donnell–Mushtari–Vlasov theory are obtained. The equations are derived using the Sanders simplified kinematic relations and variational method. It is assumed that the mechanical properties vary linearly through the shell thickness. The constituent material of the functionally graded shell is assumed to be a mixture of ceramic and metal. Analytical solutions are obtained for three types of thermal loading including Uniform Temperature Rise (UTR), Linear Radial Temperature (LRT), and Nonlinear Radial Temperature (NRT). The results are validated with the known data in the literature.

  相似文献   

2.
Thermal buckling analysis of deep imperfect functionally graded (FGM) spherical shell is considered in this paper. A mixture of ceramic and metal is considered for the FGM shell and the material properties, such as the modulus of elasticity and coefficient of thermal expansion, vary by a power law function through the thickness. Employing the Sanders non-linear kinematic relations, total potential energy function is derived and the equilibrium and stability equations are obtained for the imperfect shell. Approximate solutions satisfying the simply supported boundary condition are assumed and using the Galerkin method the error due to the approximation is minimized. The geometrically imperfect shell is considered and three types of thermal loadings, such as the uniform temperature rise (UTR), linear temperature rise through the thickness (LTR), and non-linear temperature rise through the thickness (NLTR) are considered and their associated buckling temperatures are obtained. The effects of different temperature functions and the magnitude of initial geometric imperfection are examined on the thermal buckling loads of the shell.  相似文献   

3.
In the present research, thermal buckling of shell made of functionally graded material (FGM) under thermal loads is investigated. The material properties of functionally graded materials (FGMs) are assumed to be graded in the axial direction according to a simple power law distribution in terms of the volume fractions of the constituents. In the previous articles that published, these properties are assumed to be graded in the thickness direction. Nonlinear kinematic (strain-displacement) relations are considered based on the first order shear deformation shell theory. By substituting kinematic and stress-strain relations of functionally graded shell in the total potential energy equation and employing Euler equations, the equilibrium equations are obtained. Applying Euler equations to the second variation of total potential energy equation leads to the stability equations. Then, buckling analysis of functionally graded shell under three types of thermal loads is carried out resulting into closed-form solutions.  相似文献   

4.
G. G. Sheng  X. Wang 《热应力杂志》2013,36(11):1105-1118
Considering rotary in-plane inertias, the geometrically non-linear vibrations of the functionally graded cylindrical shells under the combined effect of thermal fields and mechanical excitations are analysed by using the von Kármán non-linear theory. The coupled non-linear partial differential equations are discretized based on a series expansion of linear modes and a multiterm Galerkin's method. The non-linear equation of motion is then solved by the fourth-order Runge-Kutta numerical method. Parametric studies are carried out in order to study the influence of temperature change, volume fraction exponent of functionally graded materials and the geometry parameters on the non-linear dynamic response of the functionally graded cylindrical shells.  相似文献   

5.
The transient thermal stresses of a functionally graded (FG) cylindrical shell subjected to a thermal shock are investigated. The dynamic temperature fields of FG shells are obtained by using the Laplace transform and power series method. The differential quadrature method is developed to obtain the transient thermal stresses by solving dynamic governing equations in terms of displacements. The effects of the material constitutions on the transient temperature and the thermal stresses are analyzed in the cases of obverse thermal shock and reverse thermal shock. It turns out that the thermal stresses could be alleviated by means of changing the volume fractions of the constituents.  相似文献   

6.
In this research work, an exact analytical solution for thermal buckling analysis of functionally graded material (FGM) plates with clamped boundary condition subjected to uniform, linear, and non-linear temperature rises across the thickness direction is developed. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory accounts for parabolic distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factor. The material properties of FGM plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The governing equations are solved analytically for a plate with simply supported boundary conditions. Resulting equations are employed to obtain the closed-form solution for the thermal force resultant for each loading case. Numerical examples covering the effects of the plate aspect ratio, side-to-thickness ratio and gradient index on thermal force resultant are discussed.  相似文献   

7.
Buckling analysis of functionally graded material (FGM) beams with surface-bonded piezoelectric layers which are subjected to both thermal loading and constant voltage is studied. The material nonhomogeneous properties are assumed to vary smoothly by distribution of power law through the beam thickness. The Euler-Bernoulli beam theory and nonlinear strain-displacement relation are used to obtain the governing equations of piezoelectric FGM beam. Beam is assumed under three types of thermal loading and various types of boundary conditions. For each case of thermal loading and boundary conditions, closed-form solutions are obtained. The effects of the applied actuator voltage, beam geometry, boundary conditions, and power law index of functionally graded material on the buckling temperature are investigated.  相似文献   

8.
In this research, the buckling behavior of functionally graded (FG) plates under thermal loading is investigated based on finite element analysis. It is assumed the plate is subjected to a uniform temperature rise across plate thickness. First-order shear deformation theory (FSDT) is utilized for developing the solution method. By using an appropriately designed mesh structure for a perforated plate, the critical thermal buckling temperature is obtained by numerical solution of the problem based on finite element method (FEM). The FG plate is perforated by multiple cutouts. The number of cutouts is assumed one, two, four, or six. Also different geometrical shapes of cutouts including triangle, square, rhombus, pentagon, hexagon, and circle are considered. The influence of the number of cutouts and their geometrical shapes on thermal buckling response is investigated. The effects of the number of sides of cutouts from three (triangle) to infinity (circle) are discussed. Two different boundary conditions are taken into account. Also the influences of the distance between the cutouts and the orientation of cutouts on critical buckling temperature are studied. In addition, the effects of the orientation of ellipse cutouts are studied. Some remarkable conclusions are gained that can be useful in practical applications.  相似文献   

9.
This paper deals with the nonlinear free and forced vibration of thick annular functionally graded material plates. The temperature field considered is assumed to be a uniform distribution over the plate surface and varied in the thickness direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction. The formulations are based on the first-order shear deformation plate theory and von Kármán-type equation. The numerical illustrations concern with nonlinear vibration characteristics of functional graded plates with two constituent materials in thermal environments. Effects of material compositions and thermal loads on the vibration characteristics and stresses are examined.  相似文献   

10.
In this article, a four-variable refined plate theory is presented for buckling analysis of functionally graded plates. The theory, which has strong similarity with classical plate theory in many aspects, accounts for a quadratic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. A power law distribution is used to describe the variation of volume fraction of material compositions. Equilibrium and stability equations are derived based on the present theory. The non-linear governing equations are solved for plates subjected to simply supported boundary conditions. The thermal loads are assumed to be uniform, linear and non-linear distribution through-the-thickness. The influences of many plate parameters on buckling temperature difference will be investigated. It is noticed that the present refined plate theory can predict accurately the critical temperatures of simply supported functionally graded plates.  相似文献   

11.
This study presents the buckling analysis of thermal loaded solid circular plate made of porous material. It is assumed that the material properties of the porous plate vary across the thickness. The edge of the plate is clamped and the plate is assumed to be geometrically perfect. The geometrical nonlinearities are considered in the Love–Kirchhoff hypothesis sense. Equilibrium and stability equations, derived through the variational formulation, are used to determine the prebuckling temperatures and critical buckling temperatures. The equations are based on the Sanders non-linear strain-displacement relation.The porous plate is assumed of the form where pores are saturated with fluid. Also, the effect of pores distribution and thermal distribution on the critical buckling temperature is investigated.  相似文献   

12.
This article reports on the thermal instability of functionally graded (FG) annular microplates with different boundary conditions. The modified strain gradient elasticity theory is employed to capture size effects. The non-linear governing equations and boundary conditions are derived based on the first-order shear deformation theory (FSDT) and virtual displacements principle. The generalized differential quadrature technique is implemented so as to discretize. To obtain the critical buckling temperature, the set of linear discretized governing equations is solved as an eigenvalue problem. Also, the non-linear problem of thermal postbuckling is solved by the pseudo arc-length continuation method. The effects of boundary conditions, length scale parameter, and the variation of material through the thickness and geometrical properties on both critical buckling temperature and thermal postbuckling behavior are studied.  相似文献   

13.
Thermal buckling and postbuckling analysis of functionally graded (FG) beams is presented. The governing equations are based on the first-order shear deformation beam theory (FSDT) and the geometrical nonlinearity is modeled using Green's strain tensor in conjunction with the von Karman assumptions. For discretizing the governing equations and the related boundary conditions differential quadrature method (DQM) as a simple and computationally efficient numerical tool is used. Based on displacement control method, a direct iterative method is employed to obtain thermal postbuckling behavior of FG beams with different boundary conditions and geometrical parameters.  相似文献   

14.
The unsymmetrical buckling of clamped shallow spherical shells made of functionally graded material (FGM) and surface-bonded piezoelectric actuators under thermal load is studied in this paper. The governing equations are based on classical shell theory and the Sanders nonlinear kinematic equations. It is assumed that properties of the functionally graded material vary continuously through the thickness of the shell according to a power law distribution of the volume fractions of the constituent materials.  相似文献   

15.
Quanquan Yang 《热应力杂志》2013,36(11):1141-1155
The thermal stress field in a functionally graded coating on a parabolic substrate, where the material properties vary along the thickness direction, is considered. The closed-form solutions of thermal stresses related to compositional gradient, coating thickness and substrate curvature were obtained based on force and moment balances, and then numerical results are presented for several special examples. It is found that the magnitude and distribution of thermal stress in the functionally graded coating system with general geometrical shape can be designed properly by controlling the compositional gradient, coating thickness and substrate curvature.  相似文献   

16.
S. Ueda 《热应力杂志》2013,36(7):731-752
Effects of crack surface conductance on intensity factors for a functionally graded piezoelectric material under thermal load are investigated. The heat flux through the crack is assumed to be proportional to the local temperature difference. Moreover, two models for more realistic crack face electric boundary conditions are proposed. By using the Fourier transform, the thermal and electromechanical problems are reduced to a singular integral equation and a system of singular integral equations, respectively, which are solved numerically. Detailed results are presented to illustrate the influence of the thermal and electric conductance on the stress and electric displacement intensity factors.  相似文献   

17.
This article focuses on analytical solutions for bifurcation buckling of FGM cylindrical shells under thermal and compressive loads. A new solution methodology is established based on Hamilton's principle. The fundamental problem is subsequently transformed into the solutions of symplectic eigenvalues and eigenvectors, respectively. Then, by applying a unidirectional Galerkin method, imperfection sensitivity of an imperfect FGM cylindrical shell is discussed in detail. The solutions reveal that boundary conditions, volume fraction exponent, FGM properties, and temperature rise distribution significantly influence the buckling behavior. Critical stresses are reduced greatly due to the existence of initial geometric imperfections.  相似文献   

18.
In this article, we investigate the buckling analysis of plates that are made of functionally graded materials (FGMs) resting on two-parameter Pasternak's foundations under thermal loads. Three different thermal loads were considered, i.e., uniform temperature rise (UTR), linear and non-linear temperature distributions (LTD and NTD) through the thickness. The mechanical and thermal properties of functionally graded material (FGM) vary continuously along the plate thickness according to a simple power law distribution. Employing an analytical approach, the five coupled governing stability equations, which are derived based on first-order shear deformation plate theory, are converted into two uncoupled partial differential equations (PDEs). Considering the Levy-type solution, these two PDEs are reduced to two ordinary differential equations (ODEs) with variable coefficients. Then, the ODEs are solved using an exact analytical solution, which is called the power series Frobenius method. The appropriate convergence study and comparison with previously published related articles was employed to verify the accuracy of the proposed method. After such verifications, the effects of parameters such as the plate aspect ratio, side-to-thickness ratio, gradient index, and elastic foundation stiffnesses on the critical buckling temperature difference are illustrated and explained. The critical buckling temperatures of functionally graded rectangular plates with six various boundary conditions are reported for the first time and can serve as benchmark results for researchers to validate their numerical and analytical methods in the future.  相似文献   

19.
One-dimensional analysis of the thermomechanical response of a 3-layered nickel-functionally graded material-zirconia composite configuration under thermal loading, is the aim of this contribution. A Finite Element code is developed for the analysis. The thickness of the lower layer (nickel) is considered to be “infinite,” when compared to the thickness of the first two layers. The influence of the thickness of the functionally graded layer on the thermomechanical response of the composite material is analysed. Several distributions of the properties inside the functionally graded layer are also examined.  相似文献   

20.
Thermal buckling of circular plates made of functionally graded materials with surface-bounded piezoelectric layers are studied. The material properties of the FG plates are assumed to vary continuously through the plate thickness by distribution of power law of the volume fraction of the constituent materials. The general thermoelastic nonlinear equilibrium and linear stability equations for the piezoelectric FG plate are derived using the variational formulations. Buckling temperatures are derived for solid circular plates under uniform temperature rise, nonlinear and linear temperature variation through the thickness for immovable clamped edge of boundary conditions. The effects of piezo-to-host thickness ratio, applied actuator voltage, boundary condition, and power law index of functionally graded plates on the buckling temperature of plate are investigated. The results are verified with the data in literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号