首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
C. Galeş 《热应力杂志》2013,36(5):512-529
This paper concerns the study of time–harmonic vibrations for homogeneous and anisotropic thermoviscoelastic mixtures. The dissipative effects are used to introduce an appropriate measure associated with the amplitude of the steady–state vibrations and to establish an exponential decay estimate of Saint–Venant type, which holds for every value of the frequency of vibrations and for arbitrary values of the elastic coefficients.  相似文献   

2.
In this work, we consider a one-dimensional model of a thermoviscoelastic mixture with second sound. Under suitable assumption on the constitutive constants of the system, we prove, using the theory of semigroup of linear operators and results obtained by Prüss (1984) and Borichev and Tomilov (2009), that the damping effect through heat conduction given by the Cattaneo law is strong enough to stabilize the system.  相似文献   

3.
A framework of a general type of Petrovsky equation is formulated. The characteristic equation for eigenvalues of the system is derived and the associated eigenfunctions are found. For N-connected beams with linear feedbacks at joint points, the asymptotic expansions of eigenvalues and eigenfunctions are further developed, and the Riesz basis property and the exponential stability are then concluded.  相似文献   

4.
Physical and electrochemical characteristics of Li-ion battery systems based on LiFePO4 cathodes and graphite anodes with mixture electrolytes were investigated. The mixed electrolytes are based on an ionic liquid (IL), and organic solvents used in commercial batteries. We investigated a range of compositions to determine an optimum conductivity and non-flammability of the mixed electrolyte. This led us to examine mixtures of ILs with the organic electrolyte usually employed in commercial Li-ion batteries, i.e., ethylene carbonate (EC) and diethylene carbonate (DEC). The IL electrolyte consisted of (trifluoromethyl sulfonylimide) (TFSI) as anion and 1-ethyl-3-methyleimidazolium (EMI) as the cation. The physical and electrochemical properties of some of these mixtures showed an improvement characteristics compared to the constituents alone. The safety was improved with electrolyte mixtures; when IL content in the mixture is ≥40%, no flammability is observed. A stable SEI layer was obtained on the MCMB graphite anode in these mixed electrolytes, which is not obtained with IL containing the TFSI-anion. The high-rate capability of LiFePO4 is similar in the organic electrolyte and the mixture with a composition of 1:1. The interface resistance of the LiFePO4 cathode is stabilized when the IL is added to the electrolyte. A reversible capacity of 155 mAh g−1 at C/12 is obtained with cells having at least some organic electrolyte compared to only 124 mAh g−1 with pure IL. With increasing discharge rate, the capacity is maintained close to that in the organic solvent up to 2 C rate. At higher rates, the results with mixture electrolytes start to deviate from the pure organic electrolyte cell. The evaluation of the Li-ion cells; LiFePO4//Li4Ti5O12 with organic and, 40% mixture electrolytes showed good 1st CE at 98.7 and 93.0%, respectively. The power performance of both cell configurations is comparable up to 2 C rate. This study indicates that safety and electrochemical performance of the Li-ion battery can be improved by using mixed IL and organic solvents.  相似文献   

5.
LiFePO4/C composite was synthesized at 600 °C in an Ar atmosphere by a soluble starch sol assisted rheological phase method using home-made amorphous nano-FePO4 as the iron source. XRD, SEM and TEM observations show that the LiFePO4/C composite has good crystallinity, ultrafine sphere-like particles of 100-200 nm size and in situ carbon. The synthesized LiFePO4 could inherit the morphology of FePO4 precursor. The electrochemical performance of the LiFePO4 by galvanostatic cycling studies demonstrates excellent high-rate cycle stability. The Li/LiFePO4 cell displays a high initial discharge capacity of more than 157 mAh g−1 at 0.2C and a little discharge capacity decreases from the first to the 80th cycle (>98.3%). Remarkably, even at a high current density of 30C, the cell still presents good cycle retention.  相似文献   

6.
A macroporous SnO2/C composite anode material was synthesized using an organic template-assisted method. Polystyrene spheres were synthesized and used as template and lead to macroporous morphology with pores of 300-500 nm in diameter and a surface area of 54.7 m2 g−1. X-ray diffraction showed that the SnO2 nanoparticles are crystallized in a rutile P42/mnm lattice with the presence of Sn metal traces. The synthesized macroporous SnO2/C composite provided promising performance in lithium half cells showing a discharge capacity of 607 mAh g−1 after 55 cycles. It was found that the macroporous SnO2/C composite is stable and resistant to pulverization upon cycling.  相似文献   

7.
LiFePO4/C composite cathode materials were synthesized by carbothermal reduction method using inexpensive FePO4 as raw materials and glucose as conductive additive and reducing agent. The precursor of LiFePO4/C was characterized by differential thermal analysis and thermogravimetry. The microstructure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and particle size analysis. Cyclic voltammetry (CV) and charge/discharge cycling performance were used to characterize their electrochemical properties. The results showed that the LiFePO4/C composite synthesized at 650 °C for 9 h exhibited the most homogeneous particle size distribution. Residual carbon during processing was coated on LiFePO4, resulting in the enhancement of the material's electronic properties. Electrochemical measurements showed that the discharge capacity first increased and then decreased with the increase of synthesis temperature. The optimal sample synthesized at 650 °C for 9 h exhibited a highest initial discharge capacity of 151.2 mA h g−1 at 0.2 C rate and 144.1 mA h g−1 at 1 C rate with satisfactory capacity retention rate.  相似文献   

8.
Carbon dioxide was photocatalytically reduced to produce methanol and ethanol in the presence of CuO-loaded titania powders suspended in water containing Na2SO3 as the hole scavenger. The photocatalysts were synthesized by an impregnation method using P25 (Degussa) as support. At the optimum amount of copper oxide loading (3 wt%), the methanol and ethanol yields were 12.5 and 27.1 μmol/g-catal., respectively, following 6 h of UV illumination. The redistribution of photogenerated charge carriers in CuO/TiO2 facilitates electron trapping and prohibits the recombination of electrons and holes, which significantly increases photoefficiency. The addition of Na2SO3 promotes the formation of ethanol.  相似文献   

9.
In this paper, Sm0.2Ce0.8O1.9 (SDC) is used as a barrier interlayer between Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) anode and 8YSZ electrolyte to avoid solid state interaction of solid oxide electrolysis cells (SOEC) for high temperature application. The crystal structure and surface morphologies of BSCF and SDC powders were characterized, respectively. BSCF-SDC/YSZ/SDC-BSCF symmetric cells and BSCF-SDC/YSZ/Ni-YSZ single button cells were prepared and the related electrochemical performances were tested at 850 °C. The results showed that ASR data of BSCF-SDC/YSZ is 0.42 Ω cm2 at 850 °C. The hydrogen production rate of the single SOEC using BSCF/SDC anode can be up to 177.4 mL cm−2 h−1, also the cell exhibits excellent stability, which indicates that it could be a potential candidate for the future application of SOEC technology.  相似文献   

10.
Photocatalytic overall water splitting has been demonstrated with WO3 for oxygen producing photocatalyst (OPC), and Rh-doped SrTiO3 for hydrogen producing photocatalyst (HPC) in a simulated dual-bed system under visible light irradiation (λ ≥ 400 nm). The Fe3+/Fe2+ redox couple was chosen as the most effective electron mediator between OPC and HPC. The overall performance of the dual-bed system was limited by the low activity of HPC, and thus the activity of HPC should be increased to improve the overall performance. For overall water splitting reaction in a dual-bed system, the conduction band of OPC must be more negative than the redox potential of the electron acceptors and the valence band of HPC must be more positive than the redox potential of the electron donors.  相似文献   

11.
The olivine structured LiMnPO4/C composites were prepared by a combination of spray pyrolysis and wet ballmilling using different conductive carbons: acetylene black and two types of ketjen black. The ketjen black with a larger specific surface area and dibutyl phthalate absorption number was found to be more preferable compared with other conductive carbons studied in this work. The LiMnPO4/C composite cathode with ketjen black, which has the largest specific surface area, exhibited the largest discharge capacity compared with other LiMnPO4/C composites. The largest discharge capacity delivered by this composite cathode was 166 mAh g−1 at 0.05 C, which is about 97% of the theoretical value for LiMnPO4. The performance improvement by using this conductive carbon was attributed to its extremely large specific surface area and high ability to absorb the electrolyte, which provide enhanced charge transfer and lithium ion transport in the composite cathode structure.  相似文献   

12.
Nanocrystalline titanium dioxide/carbon composite (TiO2/C) was synthesized through a direct solution-phase carburization using tetrabutyl titanate (Ti(OBu)4) and resol as precursors. The prepared TiO2/C composite was mainly in the anatase structure with an average particle size under 20 nm, which was then introduced in NaAlH4 as a catalyst through ball milling. The desorption curves show that both nanocrystalline TiO2/C and TiO2 can obviously improve the kinetics of NaAlH4, while NaAlH4 with 3 mol% TiO2/C exhibits better cycling stability than NaAlH4 with 3 mol%TiO2. The hydrogen storage capacity of NaAlH4 with TiO2/C remains stable after 5th cycle, and about 94% of initial hydrogen is released, while the capacity of NaAlH4 with TiO2 decreases continuously during cycling, and only 88% of initial hydrogen is released after 10th cycle. Furthermore, NaAlH4 with 3 mol%TiO2/C exhibits good reversibility at relatively low hydrogen pressures, and it can reload 4.16 and 1.63wt% hydrogen at 50 and 30 bar hydrogen pressures, respectively.  相似文献   

13.
The Pd/C catalysts with and without a small amount of La2O3 were synthesized by a simple reduction reaction with sodium borohydride in aqueous solution. The structure and morphology of these catalysts were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy and transmission electron microscopy. The electrocatalytic performance of these catalysts for methanol oxidation in alkaline media was investigated using cyclic voltammetry, chronoamperometry and CO stripping experiments. The results show that the Pd–La2O3/C catalyst has a higher catalytic activity than the Pd/C catalyst, but the effect of La2O3 cannot be explained by a bi-functional mechanism. X-Ray photoelectron spectroscopy analyses suggest that the higher content of metallic Pd caused by the addition of La2O3 contributes to the better catalytic activity of Pd–La2O3/C. Based on the good electrocatalytic performance of Pd–La2O3/C, the Pd–La2O3 catalyst supported on chitosan (CS)-functionalized activated carbon nanotubes was prepared, and it exhibited a better catalytic activity. The improvement is attributed to the good dispersion status of metal particles and the further increase of metallic Pd due to the presence of CS.  相似文献   

14.
Composites of monoclinic Li3−xM′xV2−yM″2y(PO4)3 (M′ = K, M″ = Sc, Mg + Ti) with carbon were synthesized by solid-state reaction using oxalic acid or 6% H2/Ar gas mixture as reducing agents at sintering temperature of 850 °C. The samples were characterized by X-ray diffraction (XRD), voltammetry and electrochemical galvanostatic cycling. The capacity of Li3V2(PO4)3 synthesized using hydrogen as the reducing agent was 127 mA h g−1 and decreased to 120 mA h g−1 after 20 charge-discharge cycles. The substitution of lithium and vanadium for other ions did not result in the improvement of the electrochemical characteristics of the samples.  相似文献   

15.
A series of N-doped TiO2 photocatalysts were synthesized by simple hydrolysis method using titanium isopropoxide and pyridine precusors. XRD studies of all the catalysts showed a single anatase phase and TEM results confirmed that the particles obtained by this procedure are of nano size and in the range of 3–5 nm. UV–vis DRS of N-doped TiO2 catalysts clearly show an enhanced absorption in the visible light region, and the band gaps are seen decreasing as the content of doped nitrogen increases. The formation of oxynitride linkages is evidenced by the FTIR results. Further the XPS analysis confirms the presence of Ti-O-N linkage, and the binding energy values indicate that the doped nitrogen is either interstitial or chemisorbed. The photocatalytic activity of N-doped TiO2 catalysts is evaluated for hydrogen production in methanol: water mixture under solar light irradiation and 0.5 wt% N-doped TiO2 has shown a stable and high activity, 3500 μ mol/h/g.cat. The enhanced hydrogen production activity of N-doped TiO2 catalysts is attributed to the high surface area of the catalysts containing doped nitrogen mostly at the interstitial positions and enhanced visible light absorption.  相似文献   

16.
The knowledge about pressure–volume–temperature–composition (PVTxy) properties plays an important role in the design and operation of many processes involved in CO2 capture and storage (CCS) systems. A literature survey was conducted on both the available experimental data and the theoretical models associated with the thermodynamic properties of CO2 mixtures within the operation window of CCS. Some gaps were identified between available experimental data and requirements of the system design and operation. The major concerns are: for the vapour–liquid equilibrium, there are no data about CO2/COS and few data about the CO2/N2O4 mixture. For the volume property, there are no published experimental data for CO2/O2, CO2/CO, CO2/N2O4, CO2/COS and CO2/NH3 and the liquid volume of CO2/H2. The experimental data available for multi-component CO2 mixtures are also scarce. Many equations of state are available for thermodynamic calculations of CO2 mixtures. The cubic equations of state have the simplest structure and are capable of giving reasonable results for the PVTxy properties. More complex equations of state such as Lee–Kesler, SAFT and GERG typically give better results for the volume property, but not necessarily for the vapour–liquid equilibrium. None of the equations of state evaluated in the literature show any clear advantage in CCS applications for the calculation of all PVTxy properties. A reference equation of state for CCS should, thus, be a future goal.  相似文献   

17.
Series of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) samples have been prepared by modified citrate-nitrate combustion method from the precursor solutions with different pH values and citrate/metal ion ratios. The XRD results reveal that BSCF oxide free of impurity phases can be obtained from a precursor solution with a suitable pH value and a suitable C/M value, whereas CO2-TPD profiles show that there are minor carbonates species present in all BSCF samples, but the amount of these carbonates varies with the pH and C/M values of precursor solutions. The current density–voltage characteristics indicate that carbonates in the BSCF samples reduce the cell performance. The electrochemical impedance spectra (EIS) show that carbonates in BSCF lead to increases in ohmic and polarization resistances. High performance is achieved on the cell with a cathode using a pure BSCF calcined under O2 flow at 900 °C.  相似文献   

18.
This paper explores the effect and siting (location) of Nafion on Pt/C as exists in a PEM fuel cell catalyst layer. The addition of 30 wt% Nafion on Pt/C (Nfn-Pt/C) resulted in a severe loss of BET surface area by filling/blocking the smaller pore structures in the carbon support. Surprisingly, the presence of this much Nafion appeared to have only a minimal effect on the adsorption capability of either hydrogen or CO on Pt. However, the presence of Nafion doubled the amount of time required to purge most of the gas-phase and weakly-adsorbed hydrogen molecules away from the catalyst during hydrogen surface concentration measurements. This strongly chemisorbed surface hydrogen was determined by a H2/D2 switch and exchange procedure. Nafion had an even more pronounced effect on the reaction of a larger molecule like cyclopropane. Results from the modeling of cyclopropane hydrogenolysis in an idealized pores suggest that partial blockage of only the pore openings by the Nafion for the meso-macropores is sufficient to induce diffusion limitations on the reaction. The facts suggest that most of the Pt particles are in the meso-macropores of the C support, whereas Nafion is present primarily on the external surface of the C where it blocks significantly the micropores but only partially the meso-macropores.  相似文献   

19.
LiCr2YNi0.5−YMn1.5−YO4 (0 < Y ≤ 0.2) spinels have been synthesized by a sucrose-aided combustion method. Two sets of Cr-doped samples have been obtained by heating the “as-prepared” samples at 700 and 900 °C for 1 h. X-ray diffraction and thermogravimetric data show that pure and single phase spinels with similar lattice parameter have been synthesized. The homogeneity and the sub-micrometric particle size of the spinels have been shown by SEM and TEM. The main effect of the temperature is to increase the particle size from ≈50 to ≈500 nm, on heating from 700 to 900 °C. The study of the influence of Cr-dopant content and thermal treatment on the electrochemical properties at 25 °C and at 55 °C has been carried out by galvanostatic cycling in Li-cells. The discharge capacity (≈130 mAh g−1) does not noticeably change with the synthesis conditions; but the cycling performances are strongly modified. Key factors that control the cycling performances have been determined. The most highlighted result is that spinels heated at 900 °C with Y ≤ 0.1 have very high capacity retention at 55 °C (>96% after 40 cycles, cyclability >99.9% by cycle) indicating that metal doping is a new approach to prepare 5 V LiNi0.5Mn1.5O5-based cathodes with excellent cycling performances at high temperature.  相似文献   

20.
The photocatalytic decomposition of Probenazole in water using TiO2/H2O2 under sunlight illumination is studied. The addition of H2O2 is effective for the improvement of photocatalytic decomposition of Probenazole with TiO2. Furthermore, the operating conditions, such as photocatalyst dosage, temperature, pH, sunlight intensity and illumination time are also optimized. The kinetics of photocatalytic decomposition follow a pseudo–first–order kinetic law, and the rate constant is 0.129 min?1. The activation energy (Ea) is 11.34 kJ/mol. The photocatalytic decomposition mechanism is discussed on the basis of molecular orbital (MO) simulation for frontier electron density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号