首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Ueda  A. Ishii 《热应力杂志》2013,36(10):976-990
This work is concerned with the thermoelectromechanical fracture behavior of two parallel cracks of different lengths in a piezoelectric material strip under thermal loading. The crack faces are assumed to be insulated thermally and electrically. Fourier transform techniques are used to reduce the mixed boundary value problems to two systems of singular integral equations. Numerical calculations are carried out, and detailed results are presented to illustrate the influence of the geometric parameters on the thermal stress and electric displacement intensity factors.  相似文献   

2.
This work is concerned with the thermoelectromechanical fracture behavior of two parallel cracks of different lengths in a piezoelectric material strip under thermal shock loading. The crack faces are supposed to be insulated thermally and electrically. By using both the Laplace transform and the Fourier transform, the thermal and electromechanical problems are reduced to two systems of singular integral equations, respectively, which are solved numerically. A numerical method is employed to obtain the time dependent solutions by way of a Laplace inversion technique. The intensity factors versus time for various geometric parameters are calculated and presented in graphical forms. Temperature change, the stress and electric displacement distributions in a transient state are also included.  相似文献   

3.
In this article, thermo-electro-elastic fracture behavior of two parallel cracks in arbitrary positions of a piezoelectric material strip under thermo-electric loadings is considered. The crack faces are assumed to be insulated thermally and electrically. Fourier transform techniques are used to reduce the mixed boundary value problems to two systems of singular integral equations. Numerical calculations are carried out, and detailed results are presented to illustrate the influence of the geometric parameters on the stress and electric displacement intensity factors. The results for the temperature and electro-elastic fields are also included.  相似文献   

4.
S. Ueda 《热应力杂志》2013,36(4):295-316

This paper investigates the thermoelectromechanical fracture behavior of a parallel crack in a piezoelectric strip under thermoelectric loading. The crack faces are supposed to be insulated thermally and electrically. By using the Fourier transform, the thermal and electromechanical problems are reduced to a system of singular integral equations, respectively, which are solved numerically. Numerical calculations are carried out, and the energy density factor as well as the stress and electric displacement intensity factors are presented for various values of dimensionless parameters representing the size and the location of the crack and the magnitude of the electric loading.  相似文献   

5.
S. Ueda 《热应力杂志》2013,36(2):125-143
The thermoelectromechanical fracture problem for a symmetrical functionally graded piezoelectric strip containing a center crack parallel to the free boundaries is considered in this study. It is assumed that the thermoelectroelastic properties of the medium vary continuously in the thickness direction, and that the strip is under thermomechanical loadings. The crack faces are supposed to be insulated thermally and electrically. By using the Fourier transform, the thermal and electromechanical problems are reduced to singular integral equations, respectively, which are solved numerically. Numerical calculations are carried out, and detailed results are presented to illustrate the influence of the crack length and the material nonhomogeneity on the temperature-stress distributions and the stress intensity factor.  相似文献   

6.
S. Ueda  N. Nishimura 《热应力杂志》2013,36(11):1079-1098
A thermoelectroelastic problem of a functionally graded piezoelectric material (FGPM) strip containing an annular crack is solved. It is assumed that the thermoelectroelastic properties of the strip vary continuously along the thickness of the strip, and that the strip is under the thermoelectric loadings. The crack faces are supposed to be insulated thermally and electrically. Using integral transform techniques, the problem is reduced to that of solving a singular integral equation and a system of singular integral equations. Numerical calculations are carried out, and the variations of the stress and electric displacement intensity factors are plotted against the geometric parameters for some values of the material non-homogeneity parameters.  相似文献   

7.
S. Ueda 《热应力杂志》2013,36(12):1107-1125
This paper investigates the electromechanical fracture behavior of a normal crack in a piezoelectric material strip subjected to a uniform heat flow far away from the crack region. The crack faces are supposed to be insulated thermally and electrically. By using the Fourier transform, the thermal and electromechanical problems are reduced to singular integral equations, respectively, which are solved numerically. Both the cases of an internal crack and an edge crack are studied. Numerical calculations are carried out, and detailed results are presented to illustrate the influence of the crack location and length on the temperature distribution and the stress intensity factors.  相似文献   

8.
S. Ueda  Y. Ashida 《热应力杂志》2013,36(11):1103-1125
In this paper, the problem of an infinite row of parallel cracks in a functionally graded piezoelectric material strip (FGPM strip) is analyzed under static mechanical and transient thermal loading conditions. The crack faces are supposed to be completely insulated. Material properties are assumed to be exponentially dependent on the distance from the bottom surface. By using the Laplace and Fourier transforms, the thermoelectromechanical problem is reduced to a singular integral equation, which is solved numerically. The stress intensity factors for both the embedded and edge cracks are computed. The results for the crack contact problem are also included.  相似文献   

9.
S. Ueda  T. Ueda 《热应力杂志》2013,36(10):1027-1055
In this article, the problem of two parallel axisymmetric cracks in a plate of a functionally graded piezoelectric material (FGPM) strip is analyzed under transient thermal loading conditions. It is assumed that the thermoelectroelastic properties of the strip vary continuously along the thickness of the strip, and that the crack faces are supposed to be insulated thermally and electrically. By using both the Laplace and Hankel transforms, the thermal and electromechanical problems are reduced to two systems of singular integral equations. The singular integral equations are solved numerically, and a numerical method is then employed to obtain the time dependent solutions by way of a Laplace inversion technique. Systematic numerical calculations are carried out, and the field intensity factors versus time are presented for various values of dimensionless parameters representing the crack geometry and the material non-homogeneity.  相似文献   

10.
S. Ueda  H. Kondo 《热应力杂志》2013,36(3):211-232
A crack in a plate of a functionally graded piezoelectric material is studied under thermal shock loading conditions. The crack faces are supposed to be completely insulated. All material properties are assumed to be exponentially dependent on the distance from the crack line parallel to the boundaries of the plate. By using both the Laplace transform and Fourier transform, the thermal and electromechanical problems are reduced to a singular integral equation and a system of singular integral equations that are solved numerically. The stress and electric displacement intensity factors vs. time for various material constants and geometric parameters are calculated.  相似文献   

11.
S. Ueda 《热应力杂志》2013,36(10):973-994
In this study, the theoretical analysis of a transient piezothermoelastic problem is developed for a piezoelectric strip with a parallel crack under static electric loading and thermal shock loading conditions. The crack faces are supposed to be insulated thermally and electrically. By using both the Laplace transform and the Fourier transform, the thermal and electromechanical problems are reduced to a system of singular integral equations, respectively, which are solved numerically. Some numerical results for the temperature change, the stress and electric displacement distributions, and the energy density factor as well as the stress and electric displacement intensity factors in a transient state are shown in figures.  相似文献   

12.
S. Ueda 《热应力杂志》2013,36(4):321-342
In this paper, the mixed-mode thermoelectromechanical fracture problem for a functionally graded piezoelectric material (FGPM) strip is considered. It is assumed that the thermoelectroelastic properties of the strip vary continuously along the thickness of the strip, and that the strip is under the thermoelectric loadings. The crack faces are supposed to be insulated thermally and electrically. The problem is formulated in terms of a system of singular integral equations. The stress and electric displacement intensity factors are presented for various values of dimensionless parameters representing the crack size, the crack location, and the material nonhomogeneity.  相似文献   

13.
Buckling analysis of functionally graded material (FGM) beams with surface-bonded piezoelectric layers which are subjected to both thermal loading and constant voltage is studied. The material nonhomogeneous properties are assumed to vary smoothly by distribution of power law through the beam thickness. The Euler-Bernoulli beam theory and nonlinear strain-displacement relation are used to obtain the governing equations of piezoelectric FGM beam. Beam is assumed under three types of thermal loading and various types of boundary conditions. For each case of thermal loading and boundary conditions, closed-form solutions are obtained. The effects of the applied actuator voltage, beam geometry, boundary conditions, and power law index of functionally graded material on the buckling temperature are investigated.  相似文献   

14.
Using the Stroh formalism combined with the analytical continuation principle of Muskhelishvili, the Green's functions for a line heat source in a piezoelectric solid with a parabolic boundary are obtained in closed form. The obtained Green's functions not only satisfy all the given boundary conditions, but also ensure the displacement and electric potential to be single-valued. As special cases, the solutions for a piezoelectric half-plane are also presented, and they are shown to be consistent with previous works.  相似文献   

15.
Thermal buckling of circular plates made of functionally graded materials with surface-bounded piezoelectric layers are studied. The material properties of the FG plates are assumed to vary continuously through the plate thickness by distribution of power law of the volume fraction of the constituent materials. The general thermoelastic nonlinear equilibrium and linear stability equations for the piezoelectric FG plate are derived using the variational formulations. Buckling temperatures are derived for solid circular plates under uniform temperature rise, nonlinear and linear temperature variation through the thickness for immovable clamped edge of boundary conditions. The effects of piezo-to-host thickness ratio, applied actuator voltage, boundary condition, and power law index of functionally graded plates on the buckling temperature of plate are investigated. The results are verified with the data in literature.  相似文献   

16.
The aim of this article is to study the disturbance in a homogeneous, transversely isotropic (6 mm class), linear generalized piezothermoelastic, cylindrical continuum subjected to continuous mechanical and thermal point loads. A combination of integral transforms, Laplace and Hankel, has been employed to solve the model consisting of partial differential equations and boundary conditions. The transform technique reduces the system of partial differential equations to ordinary differential equations. The formal solution of the resulting system of coupled ordinary differential equations has been obtained by using the eigenvalue approach. A numerical technique for inverting the integral transforms along with Des Cartes’ procedure and the Gauss elimination method has been used to obtain the results in physical domain. The stresses, temperature change and electric displacement have been computed numerically from the relevant expressions and relations for PZT-5A material. The computer simulated results have been presented graphically.  相似文献   

17.
Electromechanical field concentrations near the electrodes in multilayer piezoelectric ceramic actuators in a residual temperature field are examined. The problem is formulated by considering a representative unit in the real multilayer actuators. A singular integral equation, in which the unknown function is the electric potential ahead of the electrode tip, is derived. The solution of the integral equation gives the electroelastic fields near the electrode tip. The thermally induced electric field ahead of the electrode tip is found to be highly singular. On the other hand, the stresses and electric displacements are singular behind the electrode tip. Possible debonding and cracking between the electrodes and the piezoelectric medium is investigated by energy density theory.  相似文献   

18.
Yoshinobu Tanigawa 《热应力杂志》2013,36(9-10):1003-1023
This article is concerned with the theoretical treatment of transient piezothermoelastic problem involving a two-layered hollow cylinder constructed of isotropic elastic and piezoelectric layers due to asymmetrical heat supply. The transient two-dimensional temperature is analyzed by the method of Laplace transformation. By using the exact solutions for piezoelectric hollow cylinder and isotropic hollow cylinder, the theoretical analysis of transient piezothermoelasticity is developed for a two-layered composite hollow cylinder under the state of plane strain. As an example, numerical calculations are carried out for an isotropic elastic hollow cylinder made of steel, bonded to a piezoelectric layer of cadmium selenide. Some numerical results for the temperature change, the stress and the electric potential distributions in a transient state are shown in figures. Furthermore, the influence of thickness of the piezoelectric layer or the isotropic elastic layer upon the temperature change, stresses and electric potential is investigated.  相似文献   

19.
对于材质为20 G的缩口管,在缩口后有的管子的缩口直段产生了沿管子轴向的纵向裂纹。通过试验分析其产生的原因以及确定其解决办法。  相似文献   

20.
S. Ueda 《热应力杂志》2013,36(7):731-752
Effects of crack surface conductance on intensity factors for a functionally graded piezoelectric material under thermal load are investigated. The heat flux through the crack is assumed to be proportional to the local temperature difference. Moreover, two models for more realistic crack face electric boundary conditions are proposed. By using the Fourier transform, the thermal and electromechanical problems are reduced to a singular integral equation and a system of singular integral equations, respectively, which are solved numerically. Detailed results are presented to illustrate the influence of the thermal and electric conductance on the stress and electric displacement intensity factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号