首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The axisymmetric problem of a circumferentially cracked transversely isotropic hollow cylinder under thermal shock is considered. It is demonstrated that appropriately normalized stress intensity factors (SIFs) depend only on three material parameters and the transient temperature distribution. It is also found that only one of these parameters has a significant effect on the normalized SIFs. Reduction in the number of material parameters, from seven to practically one, makes it possible to propose simple approximate expressions for the calculation of normalized SIFs in terms of geometric parameters. Both inner and outer surface cracks are addressed. Approximate expressions giving SIFs are presented.  相似文献   

2.
Thermally induced singular behavior of an arbitrarily oriented crack in a homogeneous substrate overlaid with a functionally graded coating is considered, within the framework of linear plane thermoelasticity. It is assumed that the graded coating/substrate system is subjected to steady-state thermal loading applied over a finite region at the coating surface and the crack in the substrate is thermally insulated, disturbing the prescribed heat flow. Based on the method of Fourier integral transform and the coordinate transformations of basic field variables in thermoelasticity equations, formulation of the crack problem is reduced to two sets of Cauchy-type singular integral equations for temperature and thermal stresses in the coated medium. In the numerical results, the main emphasis is placed on the investigation of influences of loading, geometric, and material parameters of the coated system on the variations of mixed-mode thermal stress intensity factors. Further addressed are the probable cleavage angles for the incipient growth of the original crack and the corresponding values of effective tensile-mode stress intensity factors.  相似文献   

3.
The elastostatic problem of a surface crack in a graded coating bonded to a homogeneous substrate under steady-state heat flux is considered. The coating is graded along the thickness direction and modeled as a nonhomogeneous medium with an isotropic stress-strain law. The problem is solved under the assumption of plane strain or generalized plane stress conditions. The resulting crack problem is of mode I because the orientations of the crack axis, the material gradient and the heat-flux are all parallel. The equivalent crack surface tractions are first obtained and substituted in the plane elasticity equations which are then converted analytically into a singular integral equation. The resulting equation is solved numerically using orthogonal Jacobi polynomials to yield the Mode I stress intensity factor. The main objective of the article is to study the effect of the layer thickness and nonhomogeneity parameters on the crack tip stress intensity factor for the purpose of gaining better understanding on the behavior of graded coatings under thermal loading.  相似文献   

4.
The elastodynamic problem of a surface crack in a graded coating bonded to a homogeneous substrate under transient heat flux is considered. The coating is graded along the thickness direction and modelled as a nonhomogeneous medium with an isotropic stress-strain law. The problem is solved under the assumption of plane strain or generalized plane stress conditions. The resulting crack problem is of mode I because the orientations of the crack axis, the material gradient and the heat-flux are all parallel. The equivalent crack surface tractions are first obtained and substituted in the plane elasticity equations which are then converted analytically using appropriate integral transforms into a singular integral equation. The resulting equation is solved numerically using orthogonal Jacobi polynomials to yield the Mode I stress intensity factor. The main objective of the research is to study the effect of the layer thickness and nonhomogeneity parameters on the dynamic crack tip stress intensity factor for the purpose of gaining better understanding on the behavior of graded coatings under transient thermal loading.  相似文献   

5.
The main objective of this study is to determine the stress intensity factors associated with a circumferential crack in a thin-walled cylinder subjected to quasi-static thermal loading. The cylinder is assumed to be a functionally graded material. In order to make the problem analytically tractable, the thin-walled cylinder is modeled as a layer on an elastic foundation whose thermal and mechanical properties are exponential functions of the thickness coordinate. Hence a plane strain crack problem is obtained. First temperature and thermal stress distributions for a crack-free layer are determined. Then using these solutions, the crack problem is reduced to a local perturbation problem where the only nonzero loads are the crack surface tractions. Both internal and edge cracks are considered. Stress intensity factors are computed as functions of crack geometry, material properties, and time.  相似文献   

6.
The problem of a crack in a piezoelectric material under electromechanical loading is considered. The exact solution, obtained in this work, includes the unknown a priori normal component of the electric displacement inside the crack. Several different physical assumptions associated with limited electric permeability of the crack are utilized to determine those unknown electric fluxes through the crack boundaries. Analytical formulae for the stress and electric intensity factors are derived. The effects of electric boundary conditions (limited permeability) at the crack surface on the basic parameters of fracture mechanics are analyzed and some features of the solution are discussed. If the permeability of the medium inside the crack tends to zero or is very large the extreme results i.e. impermeable or permeable crack solution are obtained.  相似文献   

7.
S. Ueda  T. Ueda 《热应力杂志》2013,36(10):1027-1055
In this article, the problem of two parallel axisymmetric cracks in a plate of a functionally graded piezoelectric material (FGPM) strip is analyzed under transient thermal loading conditions. It is assumed that the thermoelectroelastic properties of the strip vary continuously along the thickness of the strip, and that the crack faces are supposed to be insulated thermally and electrically. By using both the Laplace and Hankel transforms, the thermal and electromechanical problems are reduced to two systems of singular integral equations. The singular integral equations are solved numerically, and a numerical method is then employed to obtain the time dependent solutions by way of a Laplace inversion technique. Systematic numerical calculations are carried out, and the field intensity factors versus time are presented for various values of dimensionless parameters representing the crack geometry and the material non-homogeneity.  相似文献   

8.
The problem considered in this article is the response of a graded composite material plate containing some noncollinear cracks subjected to dynamic thermal loading. It is assumed that all the material properties depend only on the coordinates y (along the thickness direction) . In the analysis, graded regions are treated as a series of perfectly bonded composite layers, each layer being assigned slightly different material properties. Utilizing the Laplace transform and Fourier transform techniques, the general solution for each layer is derived. The complete solution of the entire medium is then obtained by introducing the mechanical boundary and layer interface conditions. The main features of the proposed method are: (1) the material may be orthotropic, (2) multiple crack problem, (3) the material properties may vary arbitrarily along the thickness direction, and (4) with the inertial terms taken into account, the present algorithm can be applied to a fracture problem under dynamic mechanical loading. Numerical examples are provided for a FGM and a substrate FGM coating structure under a nonuniform heating condition. Transient and steady-state thermal stress intensity factors are calculated and their variation due to a change of the material gradient and the location of the crack are studied.  相似文献   

9.
This study treats the inverse problem of evaluating optimum material distributions intending to realize prescribed apparent fracture toughness in thick-walled functionally graded material (FGM) circular pipes. The incompatible eigenstrain induced in the pipes after cooling from the sintering temperature due to the nonhomogeneous coefficient of thermal expansion is taken into consideration. An approximation method of finding stress intensity factors for a crack in the FGM pipes is introduced in which the nonhomogeneous material properties are simulated by a distribution of equivalent eigenstrain. A radial edge crack emanating from the inner surface of the homogenized pipes is considered for the case of a uniform internal pressure applied to the surfaces of the pipes and the crack. The stress intensity factors determined for the crack in the homogenized pipes represent the approximate values of the stress intensity factors for the same crack in the FGM pipes, and are used in the inverse problem of evaluating optimum material distributions intending to realize prescribed apparent fracture toughness in the FGM pipes. Numerical results obtained for a thick-walled TiC/Al2O3 FGM pipe reveal that the apparent fracture toughness significantly depends on the material distributions, and can be controlled within possible limits by choosing an optimum material distribution profile.  相似文献   

10.
This paper deals with the problem of an edge crack in a semi-infinite nonhomogeneous plate under steady heat flux loading conditions. The objective of the study is to assess the effect of material nonhomogeneity on the thermal stress intensity factor. All material properties are supposed to be exponentially dependent on the distance from the boundary of the plate. By using the Fourier transform, the problem is reduced to a singular integral equation that is solved numerically. The thermal stress intensity factors for various material constants are calculated. The results show that by selecting the material constants appropriately the stress intensity factor can be reduced.  相似文献   

11.
An analysis of a coupled plane thermoelastic problem for a graded orthotropic coating-substrate structure is performed under thermomechanical loading conditions. The crack direction is parallel to the free surface. Applying the superposition principle and Fourier integral transform, the heat conduction and plane elasticity equations lends themselves to the derivation of two sets of Cauchy-type singular integral equations. The thermal stress intensity factors are defined and evaluated. In the numerical results, the effects of the orthotropy parameters, thermoelastic non-homogeneity parameters, and dimensionless thermal resistance on the temperature distribution and the thermal stress intensity factors (TSIFs) are studied. The obtained results can be used to design graded orthotropic coating-substrate structures under thermomechanical loading.  相似文献   

12.
S. Ueda 《热应力杂志》2013,36(4):321-342
In this paper, the mixed-mode thermoelectromechanical fracture problem for a functionally graded piezoelectric material (FGPM) strip is considered. It is assumed that the thermoelectroelastic properties of the strip vary continuously along the thickness of the strip, and that the strip is under the thermoelectric loadings. The crack faces are supposed to be insulated thermally and electrically. The problem is formulated in terms of a system of singular integral equations. The stress and electric displacement intensity factors are presented for various values of dimensionless parameters representing the crack size, the crack location, and the material nonhomogeneity.  相似文献   

13.
First, an exact stress for an uncracked ring subjected to partially distributed traction on the inner wall is obtained based on the superposition technique and a series method; this is then applied to the cracked ring problem in terms of a weight function. The hoop stresses and stress intensity factors are presented for typical geometries and loading conditions.  相似文献   

14.
The thermoelastic problem of a transversely isotropic hollow cylinder containing a circumferential crack is investigated in the present article based on the non-Fourier heat conduction theory. The temperature and stress fields are obtained by solving the coupled partial differential equations in the Laplace domain, and corresponding thermal axial stress with minus sign is then applied to the crack surface to form a mode I crack problem. Three different kinds of crack are considered, and the singular integral equation method is adopted to solve the fracture problem. Finally, with the definition of stress intensity factor, the effect of material properties, coupling parameter, and crack geometry on the hyperbolic thermal fracture responses of a transversely isotropic hollow cylinder excited by a thermal loading is visualized.  相似文献   

15.
ABSTRACT

The problem of an embedded partially insulated crack in a graded coating bonded to a homogeneous substrate under thermal and mechanical loading is considered. The heat conduction and the plane elasticity equations are converted into singular integral equations which are solved to yield the temperature and the displacement fields in the medium as well as the crack tip stress intensity factors. A crack-closure algorithm is applied to avoid interpenetration. The main objective of the paper is to study the effect of the coating nonhomogeneity parameters, partial insulation of the crack surfaces and crack-closure on the crack tip stress intensity factors for the purpose of gaining better understanding of the thermo-mechanical behavior of graded coatings.  相似文献   

16.
In this study the axisymmetric crack problem for thermal barrier coatings under a uniform temperature change is considered. Modes I and II stress intensity factors and the strain energy release rate are calculated for various sizes and locations of the crack. The main variables in the problem are the material inhomogeneity parameter of the functionally graded material coating, the size and the location of the crack, and the relative dimensions of the specimen. The effect of the temperature dependence of the material properties on the stress intensity factors and the strain energy release rate is also investigated. The finite element method is used to solve the problem. The material property grading is accounted for by developing special inhomogeneous elements and the stress intensity factors are calculated by using enriched crack tip elements.  相似文献   

17.
S. Ueda  A. Ishii 《热应力杂志》2013,36(10):976-990
This work is concerned with the thermoelectromechanical fracture behavior of two parallel cracks of different lengths in a piezoelectric material strip under thermal loading. The crack faces are assumed to be insulated thermally and electrically. Fourier transform techniques are used to reduce the mixed boundary value problems to two systems of singular integral equations. Numerical calculations are carried out, and detailed results are presented to illustrate the influence of the geometric parameters on the thermal stress and electric displacement intensity factors.  相似文献   

18.
The analysis of thermal stresses becomes important when the piezoelectric material has to be operated in either extremely cold or hot temperature environments. Hence, it is essential to know the interaction of mechanical defects with temperature changes. This investigation is concerned with a strip problem of transversely isotropic thermopiezoelastic material containing an edge crack under partial thermal and electric loading conditions. Thermopiezoelastic stresses are analyzed by introducing potential functions and Fourier transforms. The problem reduces to solving a singular integral equation, and the singular integral equation is solved. Numerical calculations of the thermal stress intensity factors are carried out for a cadmium selenide material.  相似文献   

19.
This work is concerned with the thermoelectromechanical fracture behavior of two parallel cracks in arbitrary positions of a piezoelectric material strip under thermal shock loading. The crack faces are supposed to be insulated thermally and electrically. By using both the Laplace transform and the Fourier transform, the thermal and electromechanical problems are reduced to two systems of singular integral equations. The singular integral equations are solved numerically, and a numerical method is then employed to obtain the time-dependent solutions by way of a Laplace inversion technique. The intensity factors versus time for various geometric parameters are calculated and presented in graphical forms. The temperature, stress and electric displacement distributions in a transient state are also included.  相似文献   

20.
This work is concerned with the thermoelectromechanical fracture behavior of two parallel cracks of different lengths in a piezoelectric material strip under thermal shock loading. The crack faces are supposed to be insulated thermally and electrically. By using both the Laplace transform and the Fourier transform, the thermal and electromechanical problems are reduced to two systems of singular integral equations, respectively, which are solved numerically. A numerical method is employed to obtain the time dependent solutions by way of a Laplace inversion technique. The intensity factors versus time for various geometric parameters are calculated and presented in graphical forms. Temperature change, the stress and electric displacement distributions in a transient state are also included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号