首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
探讨钛铁矿氧化过程中的物相转化、形貌改变及其氧化机理。在700~800°C时,钛铁矿(FeTiO3)转变为赤铁矿(Fe2O3)和金红石(TiO2),当温度高于900°C时,三价铁板钛矿开始形成。原始的钛铁矿粉末呈现顺磁性,但是经过中温(800~850°C)氧化后,氧化产物呈现弱铁磁性。同时,讨论钛铁矿的氧化机理。通过对微结构的观察,发现在中温氧化过程中颗粒表面出现大量微孔,其在氧化过程中能够强化氧的传质。  相似文献   

2.
本文以钛铁矿精矿为原料,采用盐酸浸出制备人造金红石,首先采用Factsage 6.0热力学软件绘制了相关组分的φ-pH图,研究了盐酸浸出制备人造金红石的热力学基础;而后研究了还原焙烧和弱氧化焙烧两种预处理方式对人造金红石品位、粉化率等的影响。结果表明:在盐酸加压浸出体系中,钛铁矿中的FeO、Fe_2O_3、CaO和MgO均能溶解在溶液中,而SiO_2和TiO_2则留在固相中;还原焙烧和弱氧化焙烧预处理有利于提高产品TiO_2的品位,其中弱氧化焙烧还可降低产品的粉化率。  相似文献   

3.
将Ti-33Nb-4Sn钛合金置于箱式电阻炉中,分别在600、650、700、750、800℃的静态空气中进行高温氧化获得表面氧化层。用扫描电镜和XRD对氧化层进行分析。结果表明:随温度的增加,氧化程度加剧,氧化层的厚度随之增加,导致氧化层与金属的内应力增加,结合力下降,氧化膜有脱落现象。在600~700℃,Ti(Nb)O的峰随温度升高先增强后减弱;在650℃时,出现了新的Ti_xNb_yO相。当温度达到700℃时出现了金红石相,随氧化温度的升高,在700~800℃时,金红石相的峰值强度逐渐增强,Ti Nb相的峰值强度逐渐减弱。  相似文献   

4.
高钙镁型钛渣物相重构法制取人造金红石   总被引:4,自引:0,他引:4  
开展了高钙镁型钛渣通过添加Na2CO3焙烧进行矿相重构制取人造金红石的研究。采用XRD、SEM等技术对焙烧产物微观结构、物相组成和浸出产物物相组成进行表征。结果表明,在Na2CO3与钛渣质量比为3:7、焙烧温度为900℃、焙烧时间为2 h的条件下,所得焙烧产物经酸浸、煅烧后,获得TiO2品位为92.23%、回收率为92%、CaO+MgO含量(质量分数)为0.78%的人造金红石。该制备过程的机理主要在于高钙镁型钛渣添加Na2CO3焙烧可使其中的主要杂质转变为易选择性溶出的铁酸钠、Na-Fe-Ti-O系和Na-Mg-Ti-O系新矿相;通过酸浸,焙烧产物中大部分杂质被选择性溶出,钛组分转变成金红石型和锐钛型TiO2,实现了高品位人造金红石的制取。  相似文献   

5.
研究机械活化和氧化-还原处理对攀西钛铁矿精矿盐酸浸出过程的影响。结果表明:机械活化和氧化-还原处理均可明显提高钛铁矿精矿中铁、钙和镁的浸出;氧化-还原处理的钛铁矿经盐酸浸出后得到的人造金红石,其钙镁含量过高,不能满足沸腾氯化法的要求;经机械活化处理的氧化-还原钛铁矿,能进一步降低盐酸浸出渣的钙镁含量,所得到的人造金红石含TiO290.50%、全铁1.37%、钙镁总量1.00%,完全满足沸腾氯化法的生产要求。最佳的氧化还原处理条件为:在900℃氧气气氛中氧化15min,在750℃氢气气氛中还原30min。  相似文献   

6.
论述了预氧化机理、酸浸反应机理和细化机理,并通过攀枝花钛铁矿与预氧化矿在1000t/a生产装备上的对比试验,考察了两种矿对酸浸后粗金红石品位及产品细料率的影响,阐明了预氧化有提高粗金红石品位、降低产品细料率的作用。  相似文献   

7.
介绍了以70%~75%TiO2的低品位高钛渣为原料制备人造金红石的分离工艺。低品位高钛渣中MgO,FeO,CaO,Al2O3和SiO2进入杂质相,钛组分进入金红石相,金红石相中TiO2品位达到90%~95%,可满足流态化氯化对杂质的要求。1050℃的低温预氧化与1510℃的高温热处理促使渣中分散于各矿物相的钛组分选择性转移并富集于金红石相,金红石相析出与长大,用稀硫酸和稀盐酸实现金红石相的分离。实验结果表明,金红石矿物相平均晶粒度可以达到25μm,通过稀酸选择性浸出改性渣,可以获得95%TiO2品位的人造金红石。  相似文献   

8.
《轻金属》2017,(11)
本文以攀枝花钛渣作为研究对象,研究了碳酸钠改性、微波焙烧、磷酸浸出和微波煅烧联合处理工艺对钛渣晶型转变行为的影响规律。在碳酸钠改性过程中,钛渣与改性剂的配比为1∶0.3;在微波焙烧过程中,焙烧温度为900℃,焙烧时间为2h;在磷酸浸出过程中,磷酸质量分数为30%,浸出时间为5h;在微波煅烧过程中,煅烧温度为875℃,煅烧时间为0.5h。钛渣和煅烧产物的晶型结构、微观形貌和表面官能团分别采取了XRD、SEM和FT-IR进行分析。XRD分析表明,处理后的样品主峰为金红石型二氧化钛;SEM分析表明,短棒状的二氧化钛结构从样品内部生长出来;FT-IR分析表明,金红石型二氧化钛的吸收峰在546.77cm~(-1)的位置发生明显的蓝移,此方法能够有效的处理物相结构复杂的钛铁矿来制备人造金红石。  相似文献   

9.
采用XRD和TG-DSC分析研究低品位钼精矿石灰氧化焙烧过程的反应机理,确定石灰法焙烧-酸浸提钼工艺的优化参数。热重分析表明:石灰法焙烧主要发生Ca(OH)2的分解、MoS2的氧化、MoO2的再氧化及钼酸盐的生成等反应,焙烧过程主要产生MoO2、MoO3、CaMoO4、CaSO4等物相。XRD分析表明:当温度高于600℃、反应时间大于90 min时,焙砂中低价态钼的衍射峰完全消失,此时焙砂主要物相为CaMoO4和CaSO4,辉钼矿被充分氧化;石灰焙烧适宜的条件为Ca(OH)2与钼精矿质量比1:1、焙烧温度650℃、焙烧时间90 min,焙烧过程硫的保留率可达91.49%。钼焙砂酸浸适宜的浸出温度为90℃、浸出时间为2 h、H2SO4浓度为70 g/L、液固比为5:1,此时钼浸出率可达99.12%,CaMoO4被完全溶出。  相似文献   

10.
采用TG、XRD和SEM等分析手段,系统研究了900~1050°C条件下攀枝花钛铁矿的氢气还原过程。结果表明:在900°C恒温还原过程中,还原产物为铁和金红石,当温度高于1000°C时,亚铁板钛矿开始形成。在还原过程中,元素镁会逐渐富集并影响金属化过程。同时,讨论了局部化学反应和相关的还原动力学过程,反应控速步骤为扩散过程。由计算可知,在所选实验条件下,氢气还原攀枝花钛铁矿的表观活化能为117.56 kJ/mol,高于合成钛铁矿还原过程中的表观活化能。  相似文献   

11.
采用铝热还原-盐酸酸洗工艺成功制备了Magnéli相亚氧化钛,通过XRD, SEM, UV-Vis DRS和XPS等手段进行表征。结果表明:在焙烧温度950℃,焙烧时间20 min,Al/TiO_2=0.2时,成功制备以Ti_4O_7为主要物相的Magnéli相亚氧化钛材料,其粒径为400~600 nm,样品表面形成了大量的氧空位,表现出很强的紫外和可见光吸收性能。在可见光条件下光照130 min时,950℃焙烧20、25和35 min条件下制备并酸洗后的Magnéli相亚氧化钛降解亚甲基蓝的效率分别达到37%、43%和62%。  相似文献   

12.
研究预氧化钒钛磁铁精矿固态还原反应的动力学,采用XRD、SEM和EDS等手段研究还原产物的显微结构和物相变化,在此基础上,对其固态还原机理进行研究。结果表明:以煤为还原剂,在还原温度为950~1100°C时,预氧化钒钛磁铁精矿的固态还原受界面化学反应控制,反应的表观活化能为67.719 k J/mol;预氧化钒钛磁铁精矿的还原历程可描述为:预氧化钒钛磁铁精矿→钛铁晶石→钛铁矿→亚铁板钛矿(Fe Ti2O5)→(FenTi1-n)Ti2O5。预氧化钒钛磁铁精矿在1050°C还原60 min后,还原产物中会形成M3O5型(M为Fe、Ti、Mg、Mn等)固溶体,存在于M3O5固溶体中铁的难还原性是限制预氧化钒钛磁铁矿还原的主要原因。  相似文献   

13.
氰化尾渣还原焙烧酸浸提铁及氰化浸金新工艺   总被引:1,自引:0,他引:1  
以氰化尾渣为原料,采用还原焙烧酸浸工艺对其进行处理。当还原温度为850℃、加入煤粉质量为氰化尾渣质量的13%、还原时间为100 min时,对氰化尾渣进行还原,氰化尾渣中Fe2O3转化为Fe3O4或FeO。还原后采用硫酸浸出,当硫酸浓度为50%、硫酸用量系数为1.2、反应温度为105℃、反应时间为3 h时,铁的浸出率达到93.66%。还原焙烧渣在600℃氧化焙烧2 h经过脱碳后氰化浸金,当氰化钠用量为4 kg/t、反应时间为28 h、液固比为2:1时,金的浸出率达到92.4%。经过还原焙烧、硫酸浸出、氧化焙烧及氰化浸金,氰化尾渣渣量减少了38.8%。  相似文献   

14.
纳米多孔TiO2膜的晶化处理及其热稳定性研究   总被引:2,自引:0,他引:2  
通过恒压阳极氧化法在HF酸和CrO3的混合电解液中,在纯钛TAl和钛合金TC4表面分别制备了纳米多孔无定型TiO2膜。研究了TAl和TC4表面无定型TiO2膜在空气中热处理的组织转变过程。TAl试样表面的纳米多孔TiO2膜在250℃左右出现锐钛矿相,480℃左右出现金红石相,在600℃左右锐钛矿相向金红石相的转变基本完成,孔结构在600℃左右基本消失;TC4试样表面的纳米多孔TiO2膜在310℃左右出现锐钛矿相,600℃左右出现金红石相,在680℃左右锐钛相向金红石相的转变基本完成,孔结构在700℃左右基本消失。TC4试样表面的氧化膜所含合金元素Al和V,对上述结晶转变温度和孔结构存在的最高温度的差别存在重要影响。  相似文献   

15.
利用溶胶.凝胶技术制备了TiO2氧敏薄膜,通过氧化物掺杂和贵金属的表面修饰,在空气气氛下烧结氧敏薄膜a结果表明:600℃~800℃下处理的薄膜是以金红石为主晶相及少量锐钛矿的混合晶型,随着温度升高锐钛矿减少,900℃时锐钛矿相的峰基本消失:800℃下处理的薄膜灵敏度明显高于600℃和900℃下处理的薄膜灵敏度。W,Ce氧化物掺杂促进TiO2薄膜微量氧化还原,增加催化反应活性,使薄膜的氧气灵敏度有明显提高:以Pd对W-TiO2薄膜进行表面修饰,使薄膜的阻温特性得到了明显提高。  相似文献   

16.
Fe3+掺杂对氧化钛凝胶相变过程的影响   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备不同含量Fe3+掺杂的纳米氧化钛粉体,利用X光衍射仪研究了氧化钛凝胶的相变过程,分析了产物的晶体结构、金红石转变量和锐钛矿晶粒尺度.试验结果表明,Fe3+的掺杂抑制了锐钛矿相变,促进锐钛矿向金红石相的转变;阻碍锐钛矿晶粒的长大.Fe3+掺杂量大于2mol%时,在600℃烧结获得小于40nm的锐钛矿晶体.  相似文献   

17.
采用流态化氧化焙烧方式预处理广西某难浸高碳石煤以提高钒的浸出率,对氧化焙烧过程的热力学和钒的氧化动力学进行了分析,并考察了流态化焙烧对钒浸出率的影响。结果表明:石煤在氧化焙烧过程中,碳、黄铁矿的氧化反应在热力学上比V(Ⅲ)氧化反应更易进行,它们的存在对钒氧化具有抑制作用。钒的氧化反应受扩散动力学控制,其表观活化能为347.00 kJ/mol。钒浸出率随焙烧温度的增加先增加后减小,当焙烧温度为700℃和750℃时,钒浸出率随焙烧时间的延长而增加;当焙烧温度为800℃,焙烧时间0.5 h时,钒浸出率最高,达97.51%,延长焙烧时间反而不利于钒浸出。与传统的钠化氧化焙烧法相比,浸出率高,环境污染少。  相似文献   

18.
本文采用投加氨水沉淀法,利用含硫酸钛的废液制备出纳米二氧化钛.涉及的反应过程包括:硫酸钛与水的反应生成硫酸氧钛;硫酸氧钛水解形成偏钛酸;偏钛酸的热处理和脱水产生二氧化钛.二氧化钛的进一步热处理转变过程包括:非晶态二氧化钛的晶化转变;锐钛矿向金红石的高温相变.所制备的二氧化钛在350℃至700℃热处理可以获得单相锐钛矿相.锐钛矿颗粒尺度从350℃的9 nm增长到700℃的68 nm左右.在700~800 ℃之间处理,可获得锐钛矿相和金红石相双相组织.金红石颗粒尺度从800℃的83 nm增长到900℃的109 nm左右.900℃以上温度热处理可以获得单相金红石相.  相似文献   

19.
本文采用投加氨水沉淀法,利用含硫酸钛的废液制备出纳米二氧化钛。涉及的反应过程包括:硫酸钛与水的反应生成硫酸氧钛;硫酸氧钛水解形成偏钛酸;偏钛酸的热处理和脱水产生二氧化钛。二氧化钛的进一步热处理转变过程包括:非晶态二氧化钛的晶化转变;锐钛矿向金红石的高温相变。所制备的二氧化钛在350℃至700℃热处理可以获得单相锐钛矿相。锐钛矿颗粒尺度从350℃的9nm增长到700℃的68nm左右。在700~800℃之间处理,可获得锐钛矿相和金红石相双相组织。金红石颗粒尺度从800℃的83nm增长到900℃的109nm左右。900℃以上温度热处理可以获得单相金红石相。  相似文献   

20.
用Mossbauer谱法研究了预氧化钛铁矿的氢还原反应过程。结果表明,在反应过程中,不仅铁的价态在改变,还生成一系列中间相,这些中间相的转变顺序与热力学分析结果基本吻合,但其组成偏离热力学平衡值,表明还原过程中的气一固反应比中间相之间的固-固反应容易进行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号