共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
在铝合金表面化学镀Ni-W-P的热稳定性及镀层研究 总被引:2,自引:0,他引:2
在1060-H12铝合金表面化学沉积得到Ni-W-P三元合金镀层,通过X射线衍射(XRD)、扫描电镜(SEM)等测试手段研究了镀层的组织、相变行为、镀速及其硬度。结果表明:当镀液的pH值在6~11范围内,镀速随pH值增加而增大,在pH值为9时镀速达到9.5μm/h,而后镀速减小;镀层已完全覆盖基体,表面由胞状颗粒组成,大小比较均匀,无明显的缺陷,镀层呈现非晶态;当pH值为8~9时,镀层与基体结合较为牢固,弯曲试验和锉刀试验显示无脱落和起皮现象;热处理温度为380℃,保温时间为2 h时,XRD曲线中有Ni3P衍射峰出现,镀层硬度HV达到峰值约为840,再随着热处理温度增加,其硬度下降。 相似文献
4.
5.
6.
目的研究以三乙醇胺作为络合剂对化学镀Ni-W-P合金镀层的组织结构和腐蚀性能的影响。方法以化学镀的方法在40Cr基体上制备Ni-W-P合金镀层,研究了三乙醇胺对Ni-W-P合金镀层的成分结构、沉积速率、耐蚀性和孔隙率的影响。结果三乙醇胺用量为8 m L/L时镀层W、P质量分数达到峰值,分别为3.63%、9.34%。三乙醇胺用量较低时,镀层具有非晶态结构;三乙醇胺用量达到12 m L/L时镀层开始出现晶态峰,具有混晶态结构。三乙醇胺浓度对镀层的沉积速率和孔隙率具有很大影响,三乙醇胺用量为10 m L/L时,镀速达到最大值14.1μm/h,用量为8 m L/L时,镀层的孔隙率最低,为0.07%。化学镀Ni-W-P合金镀层的耐蚀性随着三乙醇胺浓度的增加,具有先增加后降低的趋势,用量为8 m L/L时,镀层的腐蚀速率最低,为5.6μm/a,耐蚀性最好。结论以三乙醇胺作为络合剂能够得到胞状颗粒且颗粒均匀细小的Ni-W-P合金镀层,对镀层的结构具有一定的影响,可以提高Ni-W-P合金镀层的沉积速率。Ni-W-P合金镀层具有很好的耐蚀性,腐蚀速率最低为5.6μm/a。 相似文献
7.
8.
9.
10.
11.
钨含量对铝合金化学镀Ni-W-P硬度和耐磨性的影响 总被引:9,自引:0,他引:9
研究铝合金化学镀Ni-W-P三元合金的耐磨性能,探讨钨含量对铝合金(LY12)化学镀Ni-W-P耐磨性和硬度的影响。结果表明:铝合金表面化学镀Ni-W-P三元合金在400℃加热1h后,表面硬度达HV251080,表面硬度和耐磨性均较基体提高10倍以上;但过高的W含量,使得表面硬度下降。磨损实验发现,试样产生了镀层碎裂和剥落现象。其主要原因是由于铝合金基体与镀层热膨胀系数的差异及Ni3P的析出导致应力过大,引起镀层硬度和耐磨性随着W含量的增加而下降。并用化学镀Ni-W-P合金沉积机理解释了镀层成分分布特征的形成原因。 相似文献
12.
13.
14.
在铝合金表面化学镀Ni-W-P三元合金,通过X射线衍射(XRD)、扫描电镜(SEM)、差热分析(DTA)等测试手段对镀层的形貌、成分、组织结构及性能进行了研究。结果表明:镀层完全覆盖基体,表面由胞状物组成,光亮均匀,颗粒平均直径约为7μm。镀态时,镀层硬度达到HV610左右,属于均一单相体系,有较高的耐腐蚀性;若在380℃进行热处理,镀层中有Ni和Ni3P晶体析出,硬度达到HV920左右。环境温度较高时,W的沉积可阻碍Ni3P的析出,延滞Ni合金的晶化过程,使得Ni-W-P镀层比Ni-P镀层具有更好的热稳定性。 相似文献
15.
16.
17.
采用化学镀的方法,调整化学镀工艺参数中钨酸钠的浓度,在低碳钢(1015)表面获得了钨含量不同的Ni-W-P镀层,分别采用扫面电镜、X射线衍射仪以及MH-6表面硬度计研究了钨含量对Ni-W-P镀层表面形貌、结构以及显微硬度的影响。结果表明,镀液浓度对于获得磷和钨含量起到决定性的作用,而磷和钨的含量决定了Ni-W-P镀层的表面形貌和结构。胞状晶的形成是Ni-W-P镀层的共同特征,镀层中钨含量的增加降低了磷的含量,因此改变了纳米晶相的含量。由于钨固溶于镍中诱使镀层产生固溶强化限制了镀层局部塑性变形,从而增加了镀层的硬度。采用差热分析研究相变行为的结果表明,高钨含量的Ni-W-P镀层表现为较高的晶化温度。进一步的污垢沉积试验表明,与低碳钢表面相比,含有不同钨含量的Ni-W-P镀层表面抑制了污垢的黏附。然而,进一步研究表明,污垢沉积速度和Ni-W-P镀层表面粗糙度之间没有必然的联系,与钨的含量有着直接的联系。 相似文献
18.
19.
为了提高铝的耐磨性和耐腐蚀性能,用电化学方法等测试手段研究了稳定剂及热处理对铝基化学镀Ni-W-P合金镀层的孔隙率、沉积速度、失重腐蚀速度、腐蚀电流密度、腐蚀电位、显微硬度和耐磨性能的影响。结果表明,铝基体上化学镀Ni-W-P的合理单组分稳定剂是KI(1 mg/L)、二元复合稳定剂是"KIO3(1 mg/L)+Pb(Ac)2(1 mg/L)"。400℃1 h热处理后,镀层的硬度最高(897 HV),耐磨性最好,但是其耐蚀性较差。在200℃下热处理5 h,镀层显微硬度显著增加,高达924HV。试验结果为铝基体化学镀Ni-W-P提供了参考。 相似文献