首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal buckling of functionally graded sandwich plates are presented in this article. Two common types of FGM sandwich plates, namely, homogeneous face layers with FGM core and FGM face layers with homogeneous core are considered. Material properties and thermal expansion coe?cient of FGM layers are assumed to vary continuously through-the-thickness according to a simple power-law distribution in terms of the volume fractions of the constituents. Equilibrium and stability equations of FGM sandwich plate with simply supported boundary conditions are derived using the higher-order shear deformation plate theory. The influence of the plate aspect ratio, the relative thickness, the gradient index, and the thermal loading conditions on the critical buckling temperature of FGM sandwich plates are investigated. The thermal loads are assumed to be uniform, linear, and nonlinear distribution through-the-thickness. A new simple solution for thermal buckling of FGM sandwich plates under nonlinear temperature rise is presented.  相似文献   

2.
In this article, we investigate the buckling analysis of plates that are made of functionally graded materials (FGMs) resting on two-parameter Pasternak's foundations under thermal loads. Three different thermal loads were considered, i.e., uniform temperature rise (UTR), linear and non-linear temperature distributions (LTD and NTD) through the thickness. The mechanical and thermal properties of functionally graded material (FGM) vary continuously along the plate thickness according to a simple power law distribution. Employing an analytical approach, the five coupled governing stability equations, which are derived based on first-order shear deformation plate theory, are converted into two uncoupled partial differential equations (PDEs). Considering the Levy-type solution, these two PDEs are reduced to two ordinary differential equations (ODEs) with variable coefficients. Then, the ODEs are solved using an exact analytical solution, which is called the power series Frobenius method. The appropriate convergence study and comparison with previously published related articles was employed to verify the accuracy of the proposed method. After such verifications, the effects of parameters such as the plate aspect ratio, side-to-thickness ratio, gradient index, and elastic foundation stiffnesses on the critical buckling temperature difference are illustrated and explained. The critical buckling temperatures of functionally graded rectangular plates with six various boundary conditions are reported for the first time and can serve as benchmark results for researchers to validate their numerical and analytical methods in the future.  相似文献   

3.
In this research work, an exact analytical solution for thermal buckling analysis of functionally graded material (FGM) plates with clamped boundary condition subjected to uniform, linear, and non-linear temperature rises across the thickness direction is developed. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory accounts for parabolic distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factor. The material properties of FGM plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The governing equations are solved analytically for a plate with simply supported boundary conditions. Resulting equations are employed to obtain the closed-form solution for the thermal force resultant for each loading case. Numerical examples covering the effects of the plate aspect ratio, side-to-thickness ratio and gradient index on thermal force resultant are discussed.  相似文献   

4.
Equilibrium and stability equations of a rectangular plate made of functionally graded material (FGM) under thermal loads are derived, based on the higher order shear deformation plate theory. Assuming that the material properties vary as a power form of the thickness coordinate variable z and using the variational method, the system of fundamental partial differential equations is established. The derived equilibrium and stability equations for functionally graded plates (FGPs) are identical to the equations for laminated composite plates. A buckling analysis of a functionally graded plate under four types of thermal loads is carried out and results in closed-form solutions. The critical buckling temperature relations are reduced to the respective relations for functionally graded plates with a linear composition of constituent materials and homogeneous plates. The results are compared with the critical buckling temperatures obtained for functionally graded plates based on classical plate theory given in the literature. The study concludes that higher order shear deformation theory accurately predicts the behavior of functionally graded plates, whereas the classical plate theory overestimates buckling temperatures.  相似文献   

5.
This article studies the nonlinear thermal buckling and postbuckling of eccentrically stiffened functionally graded plates on elastic foundation subjected to mechanical, thermal, and thermomechanical loads. The noticeable point of this study is using the Reddy's higher order shear deformation plate theory and a general formula for the forces and moments of eccentrically stiffened functionally graded material (FGM) plate, which takes into account the influence of temperature on both the FGM plate and stiffeners. The article used the Galerkin method, stress function, and iterative method to determine the thermal buckling loads and postbuckling response of the eccentrically stiffened FGM plates in three different cases of boundary conditions. The effects of material, temperature-dependent material properties, elastic foundations, boundary conditions, outside stiffeners, and temperature on the buckling and postbuckling loading capacity of the FGM plates in thermal environments are analyzed and discussed. A good agreement is obtained by comparing the present analysis with other available literature.  相似文献   

6.
Axisymmetric thermal and mechanical buckling of functionally graded circular plates is considered. Equilibrium and stability equations under thermal and mechanical loads are derived based on first-order shear deformation plate theory. Assuming that the material properties vary as a power form of the thickness coordinate variable z and using the variational method, the system of fundamental ordinary differential equations is established. Buckling analysis of a functionally graded plate under uniform temperature rise, linear and nonlinear gradient through the thickness, and uniform radial compression are considered, and the critical buckling loads are derived for clamped edge plates. The results are compared with the buckling loads obtained for a functionally graded plate based on the classical plate theory given in the literature.  相似文献   

7.
The nonlinear higher order strain-displacement relations for thin orthotropic plates are considered and substituted into the potential energy function for thermoelastic loadings. The Euler equations are then applied to the functional of energy and the general thermoelastic equations for a thin orthotropic plate are obtained. The stability equations are then derived through the second variation of the potential energy function. The results are extended to imperfect isotropic plates based on the Koiter model. The thermal loadings include uniform temperature rise, axial temperature difference, and gradient temperature through the thickness. The thermoelastic buckling of a thin isotropic plate with imperfections under these thermal loadings is investigated.  相似文献   

8.
Yun Sun 《热应力杂志》2013,36(10):1153-1172
Axisymmetrical thermal post-buckling of functionally graded material (FGM) circular plates with immovably clamped boundary and a transversely central point-space constraint was studied. The material properties of the plate were assumed to vary as power law functions in the thickness direction and the temperature rise field to change only in the thickness direction. Based on von Karman's non-linear plate theory, governing equations in terms of the displacements of the middle plane were established. Temperature rise field was obtained by solving the one-dimensional heat conduction equation associated with specified boundary conditions at the top and bottom surface of the plate. By using the shooting method, thermal post-buckling deformation of the FGM circular plate was obtained before and after the plate contacting the point-space constraint. The changes in the characteristics of the deformation and the internal forces of FGM plates were discussed. The effects of gradients of material properties and non-uniform temperature rise parameters on the thermal post-buckling behaviors of FGM circular plates were also examined.  相似文献   

9.
The nonlinear strain-displacement relations for thin orthotropic plates are considered and substituted into the potential energy function of thermoelastic loadings. The Euler equations are then applied to the functional of energy, and the general thermoelastic equations of thin orthotropic plates are obtained. The stability equations are then derived through the second variation of the potential energy function. The thermal loadings include the uniform temperature rise, axial temperature difference, and the gradient temperature through the thickness. The thermoelastic buckling of a thin plate under these thermal loadings is investigated. The results are extended to isotropic and orthotropic thin plates with and without imperfections.  相似文献   

10.
This study analyzed an elastic, rectangular, and simply supported functionally graded material (FGM) plate with medium thickness subjected to linear temperature change in the z direction. Young's modulus and Poisson ratio of the FGM plates are assumed to remain constant throughout the entire plate. However, the coefficient of thermal expansion of the FGM plate varies continuously throughout the thickness direction in relation to the volume fraction of constituents defined by power-law, sigmoid, or exponential functions. The series solutions for the power-law FGM (P-FGM), sigmoid FGM (S-FGM), or exponential FGM (E-FGM) plates subjected to thermal loading are obtained based on the classical plate theory and Fourier series expansion. The analytical solutions for P-, S-, and E-FGM plates are verified by numerical results obtained with the finite element technique.  相似文献   

11.
Thermal buckling of circular plates made of functionally graded materials with surface-bounded piezoelectric layers are studied. The material properties of the FG plates are assumed to vary continuously through the plate thickness by distribution of power law of the volume fraction of the constituent materials. The general thermoelastic nonlinear equilibrium and linear stability equations for the piezoelectric FG plate are derived using the variational formulations. Buckling temperatures are derived for solid circular plates under uniform temperature rise, nonlinear and linear temperature variation through the thickness for immovable clamped edge of boundary conditions. The effects of piezo-to-host thickness ratio, applied actuator voltage, boundary condition, and power law index of functionally graded plates on the buckling temperature of plate are investigated. The results are verified with the data in literature.  相似文献   

12.
A thermal stability analysis of functionally graded material (FGM) isotropic and sandwich plates is carried out by virtue of a refined quasi-3D Equivalent Single Layer (ESL) and Zig-Zag (ZZ) plate models developed within the framework of the Carrera Unified Formulation (CUF) and implemented within the Hierarchical Trigonometric Ritz Formulation (HTRF). The Principle of Virtual Displacements (PVD) is used both to derive the thermal stability differential equations with natural boundary conditions and to develop the HTRF. Uniform, linear, and non-linear temperature rises through-the-thickness direction are taken into account. The non-linear temperature distribution is given in different forms: 1) functionally graded; 2) solution of the one-dimensional Fourier heat conduction equation; and 3) sinusoidal. Several FGM sandwich plate configurations are investigated. Parametric studies are carried out in order to evaluate the effects of significant parameters, such as volume fraction index, length-to-thickness ratio, boundary conditions, aspect ratio, sandwich plate type, and temperature distribution through-the-thickness direction, on the critical buckling temperatures.  相似文献   

13.
ABSTRACT

Thermal buckling analysis of rectangular functionally graded plates with initial geometrical imperfections is presented in this article. The equilibrium, stability, and compatibility equations of an imperfect functionally graded plate are derived using the first-order shear deformation plate theory. It is assumed that the nonhomogeneous mechanical properties of the plate, graded through the thickness, are described by a power function of the thickness variable. The plate is assumed to be under three types of thermal loading, namely: uniform temperature rise, nonlinear temperature rise through the thickness, and axial temperature rise. Resulting equations are employed to obtain the closed-form solutions for the critical buckling temperature change of an imperfect functionally graded plate. The influence of transverse shear on thermal buckling load is discussed.  相似文献   

14.
This article is aimed at developing a nonclassical Mindlin rectangular functionally graded material (FGM) microplate based on the strain gradient theory (SGT) to study the thermal buckling behavior of microplates with different boundary conditions. This theory comprises material length scale parameters to interpret size effects. The developed model encompasses classical and modified couple stress Mindlin microplate models, if all the material length scale parameters or two of them are taken to be zero, respectively. The Mindlin rectangular FGM microplate is considered to be made of a mixture of metal and ceramic of which the volume fraction is described through a power low function. According to Hamilton's principle and the generalized differential quadrature (GDQ) method, the stability equations and associated boundary conditions are obtained and discretized, respectively. Current formulations provide a possibility to have all types of boundary conditions which herein, FGM microplates with three commonly used boundary conditions are considered. Three different types of thermal loads including uniform, linear and nonlinear temperature rises along the thickness of FGM microplates are considered. The dimensionless critical buckling temperature difference (DCBTD) predicted by SGT is compared with that of modified couple stress theory (CST) and classical theory (CT) which it is found that CST and CT underestimate the DCBTD. Also, effects of the boundary conditions, length scale parameter and material gradient index of FGM microplates on the DCBTD are judiciously investigated.  相似文献   

15.
In the present study, a simple four-unknown exponential shear deformation theory is developed for the bending of functionally graded material (FGM) rectangular plates resting on two-parameter elastic foundation and subjected to nonlinear hygrothermomechanical loading. The elastic properties, coefficient of thermal expansion, and coefficient of moisture expansion of the plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of volume fractions of material constituents. Unlike first-order and other higher-order plate theories, the present theory has four independent unknowns. The in-plane displacement field of the present theory uses exponential functions in terms of thickness co-ordinate for calculating out-of-plane shearing strains. The transverse displacement includes bending and shear components. The principle of virtual displacement is employed to derive the governing equations and associated boundary conditions. A Navier solution technique is employed to obtained an analytical solutions. The elastic foundation is modelled as two-parameter Winkler–Pasternak foundation. The numerical results obtained are compared with previously published results wherever possible to prove the efficacy and accuracy of the present theory. The effects of stiffness and gradient index of the foundation on the hygrothermomechanical responses of the plates are discussed.  相似文献   

16.
Thermal buckling analysis of deep imperfect functionally graded (FGM) spherical shell is considered in this paper. A mixture of ceramic and metal is considered for the FGM shell and the material properties, such as the modulus of elasticity and coefficient of thermal expansion, vary by a power law function through the thickness. Employing the Sanders non-linear kinematic relations, total potential energy function is derived and the equilibrium and stability equations are obtained for the imperfect shell. Approximate solutions satisfying the simply supported boundary condition are assumed and using the Galerkin method the error due to the approximation is minimized. The geometrically imperfect shell is considered and three types of thermal loadings, such as the uniform temperature rise (UTR), linear temperature rise through the thickness (LTR), and non-linear temperature rise through the thickness (NLTR) are considered and their associated buckling temperatures are obtained. The effects of different temperature functions and the magnitude of initial geometric imperfection are examined on the thermal buckling loads of the shell.  相似文献   

17.
This article presents an analytical approach to investigate the buckling and postbuckling behavior of functionally graded nanocomposite plates reinforced by single-walled carbon nanotubes, resting on elastic foundations and subjected to thermal load due to uniform temperature rise or linear temperature change across the plate thickness. The material properties of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) are assumed to be temperature independent, graded in the thickness direction, and estimated by extended rule of mixture through a micromechanical model. Formulations are based on classical plate theory taking von Kármán nonlinearity, initial geometrical imperfection, Pasternak-type foundation interaction, and tangential-edge constraints into consideration. Approximate solutions of deflection and stress functions are assumed to satisfy simply supported boundary conditions, and the Galerkin method is applied to obtain closed-form expressions of buckling temperatures and temperature-deflection relations. The influences of carbon-nanotube volume fraction and distribution pattern, aspect ratios, stiffness of foundations, degree of tangential-edge constraints, and imperfection on the thermal buckling and postbuckling behavior of FG-CNTRC plates are analyzed and discussed.  相似文献   

18.
Buckling analysis of functionally graded material (FGM) beams with surface-bonded piezoelectric layers which are subjected to both thermal loading and constant voltage is studied. The material nonhomogeneous properties are assumed to vary smoothly by distribution of power law through the beam thickness. The Euler-Bernoulli beam theory and nonlinear strain-displacement relation are used to obtain the governing equations of piezoelectric FGM beam. Beam is assumed under three types of thermal loading and various types of boundary conditions. For each case of thermal loading and boundary conditions, closed-form solutions are obtained. The effects of the applied actuator voltage, beam geometry, boundary conditions, and power law index of functionally graded material on the buckling temperature are investigated.  相似文献   

19.
Based on theory of piezoelasticity, a functionally graded material (FGM) host plate under applied electric field and thermal or mechanical load is studied. The thermo-elastic constants of the plate vary continuously throughout the thickness direction in the form of an exponential function and the Poisson ratio is held constant. Analytical solutions for the temperature, stress and displacement fields for the plate with simply supported edges are derived by using the Fourier series expansions and state-space method. The theory is assessed by comparison with the previously published results. The effects of surface boundary conditions, gradient index, applied voltage, aspect ratio and length-to-thickness ratio on the behavior of the FGM plate are examined.  相似文献   

20.
This study presents the buckling analysis of thermal loaded solid circular plate made of porous material. It is assumed that the material properties of the porous plate vary across the thickness. The edge of the plate is clamped and the plate is assumed to be geometrically perfect. The geometrical nonlinearities are considered in the Love–Kirchhoff hypothesis sense. Equilibrium and stability equations, derived through the variational formulation, are used to determine the prebuckling temperatures and critical buckling temperatures. The equations are based on the Sanders non-linear strain-displacement relation.The porous plate is assumed of the form where pores are saturated with fluid. Also, the effect of pores distribution and thermal distribution on the critical buckling temperature is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号