首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Lubrication of the tooling (punches and dies) is necessary to produce tablets. The most commonly used lubricant is magnesium stearate. Adding and blending magnesium stearate to the tablet mass often has negative effects on the properties of the compressed tablets (e.g., decreasing the tensile strength of the tablet). To avoid these negative effects, external lubrication systems were developed. This study investigated the functionality and the influence of a new press chamber coating system called the PKB II. The major difference between the PKB II and previous systems is its ability to spray a mixture of powdered magnesium stearate and air directly onto the punches and dies which was determined to allow the running of the rotor at higher speeds. The data showed a clear correlation between the spray rate of the lubricant and the concentration of the magnesium stearate per tablet. The PKB II was designed to allow for adjustments, in order to optimize the spray rate, by using the ejection force. The concentration of magnesium stearate was reduced to approximately 0.04% per tablet, using the PKB II. Additionally, the most common negative effects, such as the decrease in tablet tensile strength, were avoided by using this system.  相似文献   

2.
Abstract

A series of magnesium stearate samples, supplied by foreign and domestic manufacturers, were characterized by their physical and chemical properties. The results Indicated that the samples differed significantly with respect to chemical purity, particle size and surface area. The properties of magnesium stearate lots, manufactured by the same company, were very similar. Whatever variation that was seen was principally due to different suppliers.

Microcrystall1ne cellulose tablet formulations were prepared and evaluated using samples of magnesium stearate obtained from 16 sources. Differences 1n tablet quality were observed 1n regard to bulk volume of the blends, tablet tensile strength, and tablet friability. The data revealed that the smaller particle sized magnesium stearate samples (2.4–7.0 μm), with a large surface area (10.6–14.8 m2/g), had the most detrimental effects on the physical properties of mlcrocrystalHne cellulose tablets. Regression analysis and modeling was used to define quantltate, and predict the effects of magnesium stearate source variation on the physical properties of mlcrocrystalHne cellulose blends and compressed tablets.  相似文献   

3.
Abstract

Of the three essential functions of tablet lubricants, only the true lubricant and glidant properties have been studied in detail by objective means. Only recently has instrumentation which permits the objective measurement of the antiadhesion activity in a rotary tablet press been developed. Using a rotary press instrumented to measure the adhesion of tablets to the lower punch face, this study focuses on the adhesion of tablets in two direct compression systems. At any given compression force, adhesion of microcrystalline cellulose tablets lubricated with magnesium stearate appeared to decrease with increases in blending time or intensity of blending. Over a three-hour running time, adhesion force was found to increase to peak values and then to decline with both microcrystalline cellulose and hydrous lactose lubricated with magnesium stearate. However, ejection forces decreased gradually to apparently limiting values in each case. The adhesion of tablets to the lower punch face appeared to be affected partly by the condition of the tablet - die wall interface. Studies comparing lubricated and unlubricated microcrystalline cellulose suggest two opposing effects on tablet adhesion: (1) enhancing adhesion due to an increased reaction at the lower punch resulting from reduced die wall friction; and, (2) reducing the adhesion of tablets via the “antiadherent” effect. At the lubricant levels studied, stearic acid generally appeared to be less efficient than magnesium stearate in reducing both the adhesion and ejection forces in microcrystalline cellulose blends. However, with hydrous lactose blends, the true lubricant and antiadherent activities of stearic acid appeared to be greater than those of magnesium stearate at the 1.00% level of addition.  相似文献   

4.
Of the three essential functions of tablet lubricants, only the true lubricant and glidant properties have been studied in detail by objective means. Only recently has instrumentation which permits the objective measurement of the antiadhesion activity in a rotary tablet press been developed. Using a rotary press instrumented to measure the adhesion of tablets to the lower punch face, this study focuses on the adhesion of tablets in two direct compression systems. At any given compression force, adhesion of microcrystalline cellulose tablets lubricated with magnesium stearate appeared to decrease with increases in blending time or intensity of blending. Over a three-hour running time, adhesion force was found to increase to peak values and then to decline with both microcrystalline cellulose and hydrous lactose lubricated with magnesium stearate. However, ejection forces decreased gradually to apparently limiting values in each case. The adhesion of tablets to the lower punch face appeared to be affected partly by the condition of the tablet - die wall interface. Studies comparing lubricated and unlubricated microcrystalline cellulose suggest two opposing effects on tablet adhesion: (1) enhancing adhesion due to an increased reaction at the lower punch resulting from reduced die wall friction; and, (2) reducing the adhesion of tablets via the “antiadherent” effect. At the lubricant levels studied, stearic acid generally appeared to be less efficient than magnesium stearate in reducing both the adhesion and ejection forces in microcrystalline cellulose blends. However, with hydrous lactose blends, the true lubricant and antiadherent activities of stearic acid appeared to be greater than those of magnesium stearate at the 1.00% level of addition.  相似文献   

5.
A series of magnesium stearate samples, supplied by foreign and domestic manufacturers, were characterized by their physical and chemical properties. The results Indicated that the samples differed significantly with respect to chemical purity, particle size and surface area. The properties of magnesium stearate lots, manufactured by the same company, were very similar. Whatever variation that was seen was principally due to different suppliers.

Microcrystall1ne cellulose tablet formulations were prepared and evaluated using samples of magnesium stearate obtained from 16 sources. Differences 1n tablet quality were observed 1n regard to bulk volume of the blends, tablet tensile strength, and tablet friability. The data revealed that the smaller particle sized magnesium stearate samples (2.4-7.0 μm), with a large surface area (10.6-14.8 m2/g), had the most detrimental effects on the physical properties of mlcrocrystalHne cellulose tablets. Regression analysis and modeling was used to define quantltate, and predict the effects of magnesium stearate source variation on the physical properties of mlcrocrystalHne cellulose blends and compressed tablets.  相似文献   

6.
The rate of wear and hardness of tablets of Emcompress and sodium chloride compressed at various applied pressures in a lubricated and an unlubricated die are compared. The effect of applied pressure and concentration of magnesium stearate blended with several direct compression excipients on the wear rate constant, hardness and tensile strength of a tablet is reported. The data allow a comparison of the methods used to express the mechanical strength of tablets.  相似文献   

7.
The effects of the lubricant magnesium stearate at different concentrations, mixing shear rates, and mixing times on the tablet properties and drug dissolution from controlled-release matrix tablets containing hydroxypropyl methylcellulose 2208, USP (METHOCEL® K4M Premium) have been studied. Diphenhydramine HCl and hydrochlorothiazide were chosen as the model drugs. Spray-dried hydrous lactose (Fast Flo Lactose-316®) and anhydrous dibasic calcium phosphate (A-TAB®) were chosen as the model excipient/fillers. The impact of magnesium stearate on the mechanical strength of tablets appeared to be dependent on the bonding mechanism of the components of the powder mix. Tablets containing A-TAB, which compacts via a brittle fracture mechanism, were harder and had significantly better friability patterns than those prepared using Fast Flo Lactose-316. The compaction of Fast Flo Lactose-316 appears to be a combination of brittle fracture and plastic deformation. Mixes containing lower levels of lubricant (0.2%) generated tablets that had higher crushing strengths than those with higher lubricant levels (2.0%). Drug release was impacted to the greatest extent by the solubility of the drug and excipient/filler but was only slightly affected by the level of magnesium stearate and duration of mixing.  相似文献   

8.
Abstract

The properties of tablets prepared from different size fractions of chloroquine phosphate granules using different lubricants were evaluated. Lubricants used were magnesium stearate, stearic acid and talc, tablet properties studied include weight variation, crushing strength, friability and disintegration time

The effects obtained were largely dependent on the type and concentration of lubricant. Generally, as granule size increased, tablets were found to show increased weight variation, decreased hardness and increased friability. With tablets containing talc as lubricant, disintegration time was shown to decrease with increase in granule size.

There appears to be an optimum lubricant concentration for the compression of different granule size fractions.  相似文献   

9.
Abstract

The rate of wear and hardness of tablets of Emcompress and sodium chloride compressed at various applied pressures in a lubricated and an unlubricated die are compared. The effect of applied pressure and concentration of magnesium stearate blended with several direct compression excipients on the wear rate constant, hardness and tensile strength of a tablet is reported. The data allow a comparison of the methods used to express the mechanical strength of tablets.  相似文献   

10.
Abstract

The effects of the lubricant magnesium stearate at different concentrations, mixing shear rates, and mixing times on the tablet properties and drug dissolution from controlled-release matrix tablets containing hydroxypropyl methylcellulose 2208, USP (METHOCEL® K4M Premium) have been studied. Diphenhydramine HCl and hydrochlorothiazide were chosen as the model drugs. Spray-dried hydrous lactose (Fast Flo Lactose-316®) and anhydrous dibasic calcium phosphate (A-TAB®) were chosen as the model excipient/fillers. The impact of magnesium stearate on the mechanical strength of tablets appeared to be dependent on the bonding mechanism of the components of the powder mix. Tablets containing A-TAB, which compacts via a brittle fracture mechanism, were harder and had significantly better friability patterns than those prepared using Fast Flo Lactose-316. The compaction of Fast Flo Lactose-316 appears to be a combination of brittle fracture and plastic deformation. Mixes containing lower levels of lubricant (0.2%) generated tablets that had higher crushing strengths than those with higher lubricant levels (2.0%). Drug release was impacted to the greatest extent by the solubility of the drug and excipient/filler but was only slightly affected by the level of magnesium stearate and duration of mixing.  相似文献   

11.
It is demonstrated that piracetam undergoes plastic deformation during compression. Incorporation of magnesium stearate dramatically reduces the mechanical strength of the tablets. This effect is much less pronounced when using glyceryl behenate as a lubricating agent.

Silicon dioxide on the contrary increases to a great extent the tensile strength of piracetam tablets. This advantageous impact remains unaffected by addition of magnesium stearte on condition that the drug is mixed with silicon dioxide prior to the addition of the lubricant.  相似文献   

12.
The adhesion between aqueous-based hydroxypropyl methylcellulose (HPMC) films and tablet surface was evaluated using a Lloyd LRX materials testing machine. Special attention was paid to the effects of compression pressure and the excipients (microcrystalline cellulose, lactose and a commercial combination of lactose and cellulose (CellactoseR)) on the adhesion properties of the film.

The adhesion of HPMC films was the lowest for the tablets containing lactose as a diluent and the highest for the tablets containing microcrystalline cellulose. The adhesion to CellactoseR-based tablets increased with increasing compression pressure. With microcrystalline cellulose (MCC) and lactose, the effect of compression pressure on film adhesion was not so clear. The increase in concentration of a hydrophopic lubricant, magnesium stearate, decreased the adhesion between the films and tablets cores. The greatest decrease was observed with the MCC tablets.

Furthermore the results showed that, the film coating increased clearly the mechanical strength of the tablets, depending on the excipient, the compression pressure and amount of magnesium stearate.  相似文献   

13.
The effect of noncompacted and compacted hydrophilic as well as hydrophobic colloidal silicon dioxide (CSD) on tableting properties of three different pharmaceutical excipients used for direct compression, namely, Avicel® PH 101, Starch 1500®®, and Tablettose® 80, was investigated. Binary powder mixtures containing 0.5% CSD and 99.5% excipient were compressed on an instrumented single-punch tablet press, and the radial tensile strength/compaction load profiles were examined. The Ryshkewitch-Duckworth relationship shows that the influence of CSD on tablet strength was dependent on the hydrophobic and hydrophilic nature of the CSD and on the compaction characteristics of the excipients. Tablets from each excipient with and without CSDs were subjected to different levels of relative humidity at 20°C for 7 days. The sorption isotherms and the radial tensile strengths of the tablets after the storage period showed that neither hydrophilic nor hydrophobic CSD influenced the tablet properties of Avicel® PH 101, Starch 1500®®, and Tablettose® 80. Moreover, ternary powder mixtures containing magnesium stearate as a third component were compressed in order to study the influence of CSD on the deleterious effect of magnesium stearate on the interparticle bonding. The radial tensile strength/compaction load profiles and the residual and ejection forces of tablets made from ternary mixtures showed that CSD eliminated the negative effect of magnesium stearate on interparticle bonding while maintaining the lubrication action, in a manner that was affected by its hydrophobicity/hydrophilicity and by the particle deformation properties of the excipient upon compression.  相似文献   

14.
The effect of noncompacted and compacted hydrophilic as well as hydrophobic colloidal silicon dioxide (CSD) on tableting properties of three different pharmaceutical excipients used for direct compression, namely, Avicel® PH 101, Starch 1500®®, and Tablettose® 80, was investigated. Binary powder mixtures containing 0.5% CSD and 99.5% excipient were compressed on an instrumented single-punch tablet press, and the radial tensile strength/compaction load profiles were examined. The Ryshkewitch-Duckworth relationship shows that the influence of CSD on tablet strength was dependent on the hydrophobic and hydrophilic nature of the CSD and on the compaction characteristics of the excipients. Tablets from each excipient with and without CSDs were subjected to different levels of relative humidity at 20°C for 7 days. The sorption isotherms and the radial tensile strengths of the tablets after the storage period showed that neither hydrophilic nor hydrophobic CSD influenced the tablet properties of Avicel® PH 101, Starch 1500®®, and Tablettose® 80. Moreover, ternary powder mixtures containing magnesium stearate as a third component were compressed in order to study the influence of CSD on the deleterious effect of magnesium stearate on the interparticle bonding. The radial tensile strength/compaction load profiles and the residual and ejection forces of tablets made from ternary mixtures showed that CSD eliminated the negative effect of magnesium stearate on interparticle bonding while maintaining the lubrication action, in a manner that was affected by its hydrophobicity/hydrophilicity and by the particle deformation properties of the excipient upon compression.  相似文献   

15.
This article deals with the study of the energetic relationships during compaction and the properties of tablets produced from a co-processed excipient based on starch and called StarCap1500®. This article compares it with the substance Starch1500®. The study also includes the mixtures of StarCap 1500® and the granulated directly compressible lactose Pharmatose DCL®15. The tablet properties tested included tensile strength and disintegration time, examined in dependence on compression force, and also a 0.4% addition of magnesium stearate. The results show a better compressibility of StarCap 1500 in comparison with Starch 1500 and a lower elastic component of energy. The tablets were stronger and disintegrated more rapidly, but the substance possessed a higher sensitivity to an addition of a lubricant than Starch 1500. Increasing portions of StarCap 1500 in the mixtures with Pharmatose DCL 15 increased the tensile strength of tablets, disintegration period as well as the sensitivity to an addition of a lubricant. From the energetic viewpoint, energy for friction was decreasing, while the energy accumulated by the tablet during compaction and the elastic component of energy were increased.  相似文献   

16.
This article deals with the study of the energetic relationships during compaction and the properties of tablets produced from a co-processed excipient based on starch and called StarCap 1500?. This article compares it with the substance Starch1500?. The study also includes the mixtures of StarCap 1500? and the granulated directly compressible lactose Pharmatose DCL?15. The tablet properties tested included tensile strength and disintegration time, examined in dependence on compression force, and also a 0.4% addition of magnesium stearate. The results show a better compressibility of StarCap 1500 in comparison with Starch 1500 and a lower elastic component of energy. The tablets were stronger and disintegrated more rapidly, but the substance possessed a higher sensitivity to an addition of a lubricant than Starch 1500. Increasing portions of StarCap 1500 in the mixtures with Pharmatose DCL 15 increased the tensile strength of tablets, disintegration period as well as the sensitivity to an addition of a lubricant. From the energetic viewpoint, energy for friction was decreasing, while the energy accumulated by the tablet during compaction and the elastic component of energy were increased.  相似文献   

17.
The effect of concentration of lubricant on the axial and radial tensile strengths of tablets was determined for four directly compressible pharmaceutical materials: anhydrous lactose, aspirin, microcrystalline cellulose, and dibasic calcium phosphate dihydrate. The lubricants investigated were: hydrogenated vegetable oil, magnesium stearate, polyethylene glycol 4000, stearic acid, and talc. For plastic materials the tensile strengths were reduced as the concentration of the lubricant was increased. For brittle material the tensile strength was not changed significantly as the concentration of lubricant was increased.  相似文献   

18.
Abstract

The adhesion between aqueous-based hydroxypropyl methylcellulose (HPMC) films and tablet surface was evaluated using a Lloyd LRX materials testing machine. Special attention was paid to the effects of compression pressure and the excipients (microcrystalline cellulose, lactose and a commercial combination of lactose and cellulose (CellactoseR)) on the adhesion properties of the film.

The adhesion of HPMC films was the lowest for the tablets containing lactose as a diluent and the highest for the tablets containing microcrystalline cellulose. The adhesion to CellactoseR-based tablets increased with increasing compression pressure. With microcrystalline cellulose (MCC) and lactose, the effect of compression pressure on film adhesion was not so clear. The increase in concentration of a hydrophopic lubricant, magnesium stearate, decreased the adhesion between the films and tablets cores. The greatest decrease was observed with the MCC tablets.

Furthermore the results showed that, the film coating increased clearly the mechanical strength of the tablets, depending on the excipient, the compression pressure and amount of magnesium stearate.  相似文献   

19.
A novel process was developed for manufacturing acetaminophen in a free-flowing, directly compressible agglomerated form, involving spray agglomeration of acetaminophen powder with polyvinylpyrrolidone (PVP) in isopropyl alcohol as a bonding agent using a fluidized-bed granulator. Agglomerates prepared with 5% PVP yielded a free-flowing and compressible material. Upon lubrication with 0.5% magnesium stearate, the material was found to be directly compressible into tablets. To improve dissolution and tableting properties, the agglomerates were compressed into tablets after blending with varying weight ratios of microcrystalline cellulose/pregelatinized starch as a filler/disintegrant combination. The final stable tablet formulation consisted of agglomerates equivalent to 325 mg of acetaminophen, 2.1 mg of magnesium stearate, and the filler/disintegrant in a weight ratio of 70:30 to yield a tablet weight of 425 mg. Physical properties and dissolution profile of these tablets were comparable to those of a commercial acetaminophen tablet. Physiologic availability calculated using the urinary excretion method indicated half-lives of 2.0, 2.1, and 2.2 hours for control (acetaminophen powder), experimental tablet, and a marketed product, respectively.  相似文献   

20.
The variability of the physicochemical properties of 13 commercial batches of magnesium stearate (from three vendors) were determined using various physicochemical tests. Differences observed were related to the crystal lattice and the hydration state of the samples as well as the impurities contained in their matrices. A formulation model containing 2% of magnesium stearate was used to determine the lubricant properties of 6 of the 13 magnesium stearate lots received. The tablet press used was a Stoks® Single Station Instrumented F Press. The different lubricant properties observed were related to the particle size of the magnesium stearate lot used. The influence of the crystalline structure on the lubricant properties of magnesium stearate was also shown whereas the influence of the adsorbed water did not appear to determine process capabilities. Two possible solutions were evaluated to reduce the lubricant property differences among the lots tested. By decreasing the particle size of a lot of magnesium stearate, it has been possible to significantly improve its lubricant properties. Magnesium stearate in association with talc also presented an improvement of its lubricant properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号