首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
This study aimed to develop vitamin D3 fortified ice cream by incorporating vitamin D3 in an emulsified form using milk protein as emulsifier. Physicochemical stability of vitamin D3 emulsions using different milk protein emulsifiers including nonfat dry milk, sodium caseinate (Na-Cas), and whey protein isolate was investigated. Emulsion using Na-Cas had the smallest oil droplet size and the lowest creaming index throughout the storage time (P < 0.05) and was selected to fortify in full-fat, reduced-fat, and low-fat ice creams at 250 IU per serving. Vitamin D3 retention in each ice cream was determined after 0, 7, 14, 28 and 56 d of storage at −20 °C. The results indicated that the emulsified form of vitamin D3 remarkably improved vitamin D3 stability in all ice cream formulations.  相似文献   

3.
Normally, reduced-fat Cheddar cheese is made by removal of fat from milk prior to cheese making. Typical aged flavor may not develop when 50% reduced-fat Cheddar cheese is produced by this approach. Moreover, the texture of the reduced-fat cheeses produced by the current method may often be hard and rubbery. Previous researchers have demonstrated that aged Cheddar cheese flavor intensity resides in the water-soluble fraction. Therefore, we investigated the feasibility of fat removal after the aging of Cheddar cheese. We hypothesized the typical aged cheese flavor would remain with the cheese following fat removal. A physical process for the removal of fat from full-fat aged Cheddar cheese was developed. The efficiency of fat removal at various temperatures, gravitational forces, and for various durations of applied forces was determined. Temperature had the greatest effect on the removal of fat. Gravitational force and the duration of applied force were less important at higher temperatures. A positive linear relationship between temperature and fat removal was observed from 20 to 33 degrees C. Conditions of 30 degrees C and 23,500 x g for 5 min removed 50% of the fat. The removed fat had some aroma but little or no taste. The fatty acid composition, triglyceride molecular weight distribution, and melting profile of the fat retained in the reduced-fat cheeses were all consistent with a slight increase in the proportion of saturated fat relative to the full-fat cheeses. The process of fat removal decreased the grams of saturated fat per serving of cheese from 6.30 to 3.11 g. The flavor intensity of the reduced-fat cheeses were at least as intense as the full-fat cheeses.  相似文献   

4.
Encapsulation of vitamin B12 in water-in-oil-in-water double emulsions was optimized to produce functional cream for cheese milk standardization. The effect of encapsulation on vitamin B12 release during in vitro gastric digestion and on retention during cheese making was determined. Primary water-in-oil emulsions were prepared from vitamin B12 (0.2%, w/v) solution and butter oil containing 8% (w/w) polyglycerol polyricinoleate, and dispersed in skim milk or sodium caseinate solution using a dispersing tool or a valve homogenizer. Encapsulation of vitamin B12 in double emulsions exhibited greater than 96% efficiency and prevented vitamin losses during in vitro gastric digestion. Less than 5% of the encapsulated vitamin B12 was released from double emulsion stabilized with sodium caseinate. Compared with non-encapsulated vitamin B12, encapsulation in double emulsions reduced vitamin B12 losses in whey and increased retention in cheese from 6.3 to more than 90%.  相似文献   

5.
6.
Cheddar cheese mixed starter cultures containing exopolysaccharide (EPS)-producing strains of Lactococcus lactis subsp. cremoris (Lac. cremoris) were characterized and used for the production of reduced-fat Cheddar cheese (15% fat). The effects of ropy and capsular strains and their combination on cheese production and physical characteristics as well as composition of the resultant whey samples were investigated and compared with the impact of adding 0.2% (w/v) of lecithin, as a thickening agent, to cheese milk. Control cheese was made using EPS-non-producing Lac. cremoris. Cheeses made with capsular or ropy strains or their combination retained 3.6–4.8% more moisture and resulted in 0.29–1.19 kg/100 kg higher yield than control cheese. Lecithin also increased the moisture retention and cheese yield by 1.4% and 0.37%, respectively, over the control cheese. Lecithin addition also substantially increased viscosity, total solid content and concentrating time by ultra-filtration (UF) of the whey produced. Compared with lecithin addition, the application of EPS-producing strains increased the viscosity of the resultant whey slightly, while decreasing whey total solids, and prolonging the time required to concentrate whey samples by UF. The amount of EPS expelled in whey ranged from 31 to 53 mg L−1. Retention of EPS-producing strains in cheese curd was remarkably higher than that of non-producing strains. These results indicate the capacity of EPS-producing Lac. cremoris for enhanced moisture retention in reduced-fat Cheddar cheese; these strains would be a promising alternative to commercial stabilizers.  相似文献   

7.
The microstructure of reduced- and full-fat Cheddar cheeses made with exopolysaccharide (EPS)-producing and nonproducing cultures was observed using cryo-scanning electron microscopy. Fully hydrated cheese samples were rapidly frozen in liquid nitrogen slush (−207°C) and observed in their frozen hydrated state without the need for fat extraction. Different EPS-producing cultures were used in making reduced-fat Cheddar cheese. Full-fat cheese was made with a commercial EPS-nonproducing starter culture. The cryo-scanning electron micrographs showed that fat globules in the fully hydrated cheese were surrounded by cavities. Serum channels and pores in the protein network were clearly observed. Young (1-wk-old) full-fat cheese contained wide and long fat serum channels, which were formed because of fat coalescence. Such channels were not observed in the reduced-fat cheese. Young reduced-fat cheese made with EPS-nonproducing cultures contained fewer and larger pores than did reduced-fat cheese made with a ropy strain of Lactococcus lactis ssp. cremoris (JFR1), which had higher moisture levels. A 3-dimensional network of EPS was observed in large pores in cheese made with JFR1. Major changes in the size and distribution of pores within the structure of the protein network were observed in all reduced-fat cheeses, except that made with JFR1, as they aged. Changes in porosity were less pronounced in both the full-fat and the reduced-fat cheeses made with JFR1.  相似文献   

8.
The objective of this study was to evaluate the effect of capsular and ropy exopolysaccharide (EPS)-producing strains of Lactococcus lactis ssp. cremoris on textural and microstructural attributes during ripening of 50%-reduced-fat Cheddar cheese. Cheeses were manufactured with added capsule- or ropy-forming strains individually or in combination. For comparison, reduced-fat cheese with or without lecithin added at 0.2% (wt/vol) to cheese milk and full-fat cheeses were made using EPS-nonproducing starter, and all cheeses were ripened at 7°C for 6 mo. Exopolysaccharide-producing strains increased cheese moisture retention by 3.6 to 4.8% and cheese yield by 0.28 to 1.19 kg/100 kg compared with control cheese, whereas lecithin-containing cheese retained 1.4% higher moisture and had 0.37 kg/100 kg higher yield over the control cheese. Texture profile analyses for 0-d-old cheeses revealed that cheeses with EPS-producing strains had less firm, springy, and cohesive texture but were more brittle than control cheeses. However, these effects became less pronounced after 6 mo of ripening. Using transmission electron microscopy, fresh and aged cheeses with added EPS-producing strains showed a less compact protein matrix through which larger whey pockets were dispersed compared with control cheese. The numerical analysis of transmission electron microscopy images showed that the area in the cheese matrix occupied by protein was smaller in cheeses with added EPS-producing strains than in control cheese. On the other hand, lecithin had little impact on both cheese texture and microstructure; after 6 mo, cheese containing lecithin showed a texture profile very close to that of control reduced-fat cheese. The protein-occupied area in the cheese matrix did not appear to be significantly affected by lecithin addition. Exopolysaccharide-producing strains could contribute to the modification of cheese texture and microstructure and thus modify the functional properties of reduced-fat Cheddar cheese.  相似文献   

9.
A current industry goal is to produce a 75 to 80% fat-reduced Cheddar cheese that is tasty and appealing to consumers. Despite previous studies on reduced-fat cheese, information is critically lacking in understanding the flavor and flavor chemistry of reduced-fat and nonfat Cheddar cheeses and how it differs from its full-fat counterpart. The objective of this study was to document and compare flavor development in cheeses with different fat contents so as to quantitatively characterize how flavor and flavor development in Cheddar cheese are altered with fat reduction. Cheddar cheeses with 50% reduced-fat cheese (RFC) and low-fat cheese containing 6% fat (LFC) along with 2 full-fat cheeses (FFC) were manufactured in duplicate. Cheeses were ripened at 8°C and samples were taken following 2 wk and 3, 6, and 9 mo for sensory and instrumental volatile analyses. A trained sensory panel (n = 10 panelists) documented flavor attributes of cheeses. Volatile compounds were extracted by solid-phase microextraction or solvent-assisted flavor evaporation followed by separation and identification using gas chromatography-mass spectrometry and gas chromatography-olfactometry. Selected compounds were quantified using external standard curves. Sensory properties of cheeses were distinct initially but more differences were documented as cheeses aged. By 9 mo, LFC and RFC displayed distinct burnt/rosy flavors that were not present in FFC. Sulfur flavor was also lower in LFC compared with other cheeses. Forty aroma-active compounds were characterized in the cheeses by headspace or solvent extraction followed by gas chromatography-olfactometry. Compounds were largely not distinct between the cheeses at each time point, but concentration differences were evident. Higher concentrations of furanones (furaneol, homofuraneol, sotolon), phenylethanal, 1-octen-3-one, and free fatty acids, and lower concentrations of lactones were present in LFC compared with FFC after 9 mo of ripening. These results confirm that flavor differences documented between full-fat and reduced-fat cheeses are not due solely to differences in matrix and flavor release but also to distinct differences in ripening biochemistry, which leads to an imbalance of many flavor-contributing compounds.  相似文献   

10.
Proteolysis during ripening of reduced fat Cheddar cheeses made with different exopolysaccharide (EPS)-producing and nonproducing cultures was studied. A ropy strain of Lactococcus lactis ssp. cremoris (JFR1) and capsule-forming nonropy and moderately ropy strains of Streptococcus thermophilus were used in making reduced-fat Cheddar cheese. Commercial Cheddar starter was used in making full-fat cheese. Results showed that the actual yield of cheese made with JFR1 was higher than that of all other reduced-fat cheeses. Cheese made with JFR1 contained higher moisture, moisture in the nonfat substance, and residual coagulant activity than all other reduced-fat cheeses. Proteolysis, as determined by PAGE and the level of water-soluble nitrogen, was also higher in cheese made with JFR1 than in all other cheeses. The HPLC analysis showed a significant increase in hydrophobic peptides (causing bitterness) during storage of cheese made with JFR1. Cheese made with the capsule-forming nonropy adjunct of S. thermophilus, which contained lower moisture and moisture in the nonfat substance levels and lower chymosin activity than did cheese made with JFR1, accumulated less hydrophobic peptides. In conclusion, some EPS-producing cultures produced reduced-fat Cheddar cheese with moisture in the nonfat substance similar to that in its full-fat counterpart without the need for modifying the standard cheese-making protocol. Such cultures might accumulate hydrophobic (bitter) peptides if they do not contain the system able to hydrolyze them. For making high quality reduced-fat Cheddar cheese, EPS-producing cultures should be used in conjunction with debittering strains.  相似文献   

11.
Reduced-fat foods have become more popular due to their health benefits; however, reducing the fat content of food affects the sensory experience. Therefore, it is necessary to improve the sensory acceptance of reduced-fat foods to that of full-fat equivalents. The aim of this study was to evaluate the effect of adding whey protein microgels (WPM) with an average diameter of 4 μm, or WPM with adsorbed anthocyanins [WPM (Ant)] on the textural and sensory properties of reduced-fat Cheddar cheese (RFC). Reduced-fat Cheddar cheese was prepared in 2 ways: (1) by adding WPM, designated as RFC+M, or (2) by adding WPM (Ant), designated as RFC+M (Ant). For comparison, RFC without fat substitutes and full-fat Cheddar cheese were also prepared. We discovered that the addition of WPM and WPM (Ant) increased the moisture content, fluidity, and meltability of RFC, and reduced its hardness, springiness, and chewiness. The textural and sensory characteristics of RFC were markedly inferior to those of full-fat Cheddar cheese, whereas addition of WPM and WPM (Ant) significantly improved the sensory characteristics of RFC. The WPM and WPM (Ant) showed a high potential as fat substitutes and anthocyanin carriers to effectively improve the acceptance of reduced-fat foods.  相似文献   

12.
The purpose of this research was to study the capacity of emulsions containing saturated monoglyceride self‐assembly structures to deliver omega‐3 fatty acids in fresh soft cheese. To this aim, fortified emulsions containing different ratios of milk, saturated monoglycerides (MGs) and cod liver oil were added to milk before cheese‐making. These emulsions were characterised by distinct microstructural features observed by polarised light microscopy and apparent viscosity values. The omega‐3 delivery performance of MG emulsions highlighted that this strategy allowed a good retention of the omega‐3‐rich oil in the curd (up to 75%). The fortified cheeses showed yield value and fat content higher than those of control samples. The enriched cheese showed hardness and cohesiveness obtained by texture profile analysis similar to those of the unfortified product. Only a slight decrease in gumminess was detected in fortified cheese.  相似文献   

13.
The objectives were to reduce bitterness in reduced-fat Cheddar cheese made with an exopolysaccharide (EPS)-producing culture and study relationships among ultra-filtration (UF), residual chymosin activity (RCA), and cheese bitterness. In previous studies, EPS-producing cultures improved the textural, melting, and viscoelastic properties of reduced-fat Cheddar cheese. However, the EPS-positive cheese developed bitterness after 2 to 3 mo of ripening due to increased RCA. We hypothesized that the reduced amount of chymosin needed to coagulate UF milk might result in reduced RCA and bitterness in cheese. Reduced-fat Cheddar cheeses were manufactured with EPS-producing and nonproducing cultures using skim milk or UF milk (1.2×) adjusted to a casein:fat ratio of 1.35. The EPS-producing culture increased moisture and RCA in reduced-fat Cheddar cheese. Lower RCA was found in cheese made from UF milk compared with that in cheese made from control milk. Ultrafiltration at a low concentration rate (1.2×) produced EPS-positive, reduced-fat cheese with similar RCA to that in the EPS-negative cheese. Slower proteolysis was observed in UF cheeses compared with non-UF cheeses. Panelists reported that UF EPS-positive cheese was less bitter than EPS-positive cheese made from control milk. This study showed that UF at a low concentration factor (1.2×) could successfully reduce bitterness in cheese containing a high moisture level. Because this technology reduced the RCA level (per g of protein) to a level similar to that in the control cheeses, the contribution of chymosin to cheese proteolysis would be similar in both cheeses.  相似文献   

14.
Textural, melting, and sensory characteristics of reduced-fat Cheddar cheeses made with exopolysaccharide (EPS)-producing and nonproducing cultures were monitored during ripening. Hardness, gumminess, springiness, and chewiness significantly increased in the cheeses as fat content decreased. Cheese made with EPS-producing cultures was the least affected by fat reduction. No differences in hardness, springiness, and chewiness were found between young reduced fat cheese made with a ropy Lactococcus lactis ssp. cremoris [JFR1; the culture that produced reduced-fat cheese with moisture in the nonfat substance (MNFS) similar to that in its full-fat counterpart] and its full-fat counterpart. Whereas hardness of full-fat cheese and reduced-fat cheese made with JFR1 increased during ripening, a significant decrease in its value was observed in all other cheeses. After 6 mo of ripening, reduced fat cheeses made with all EPS-producing cultures maintained lower values of all texture profile analysis parameters than did those made with no EPS. Fat reduction decreased cheese meltability. However, no differences in meltability were found between the young full-fat cheese and the reduced-fat cheese made with the ropy culture JFR1. Both the aged full- and reduced-fat cheeses made with JFR1 had similar melting patterns. When heated, they both became soft and creamy without losing shape, whereas reduced-fat cheese made with no EPS ran and separated into greasy solids and liquid. No differences were detected by panelists between the textures of the full-fat cheese and reduced-fat cheese made with JFR1, both of which were less rubbery or firm, curdy, and crumbly than all other reduced-fat cheeses.  相似文献   

15.
The chemical composition, yield, structural arrangement, instrumental textural characteristics, and preference sensory evaluation of reduced-fat cheese-like products manufactured from skim milk and different water-in-oil-in-water (W1/O/W2) emulsions were determined. A full-fat white fresh cheese (WFC) was prepared from milk containing 27 g of milk-fat L−1, and five reduced-fat white fresh cheese-like products (EC) were made from skim milk added with 25 g of multiple emulsions L−1 containing canola oil and stabilized/emulsified by amidated low-methoxyl pectin (LMP), carboxymethylcellulose (CMC), gum Arabic (GA), and blends of GA-CMC or GA-LMP. The chemical composition, yield, structural arrangement and texture of the cheese-like products were affected by the biopolymers used as emulsifying/stabilizing agents of the multiple emulsions. CMC produced an EC with similar textural behaviour than the WFC cheese. GA contributed to a higher yield and fat content in the EC cheese in comparison with CMC and LMP cheese. GA and LMP contributed to increased values of hardness and chewiness of the EC cheese. The cheese made with multiple emulsions incorporating GA and LMP emulated best the textural characteristics of the WFC cheese. All of the EC cheese showed marked differences in microstructure.  相似文献   

16.
The objective was to study the influence of different exopolysaccharide (EPS)-producing and nonproducing lactic cultures on the viscoelastic properties of reduced-fat Cheddar cheese. Changes in the viscoelastic properties were followed over a ripening period of 6 mo. Results showed that the elastic, viscous, and complex moduli were higher in reduced-fat cheeses made with EPS-nonproducing cultures than in full-fat cheese. No differences in the viscoelastic properties were found between young reduced-fat cheese made with a ropy strain of Lactococcus lactis ssp. cremoris (JFR1) and its full-fat counterpart. Interestingly, the changes in viscoelastic moduli in both full-fat cheese and reduced-fat cheese made with JFR1 during ripening followed the same pattern. Whereas the moduli increased during the first month of ripening in those 2 cheeses, a dramatic decrease was observed in all other cheeses. Slopes of the viscoelastic moduli as a function of frequency were lower in the full-fat than in reduced-fat cheeses. The creep test showed that fresh reduced-fat cheese made with JFR1 was less rigid and more deformable than that made with EPS-nonproducing cultures. The creep and recovery properties of young reduced-fat cheese made with JFR1 and the full-fat type were similar. No differences were found in the viscoelastic properties between reduced-fat cheese made with no EPS and those made with EPS-producing adjunct cultures of Streptococcus thermophilus. After 6 mo of ripening, cheeses made with EPS-producing cultures maintained lower elastic and viscous moduli than did those made with no EPS.  相似文献   

17.
The Cheddar cheese colorant annatto is present in whey and must be removed by bleaching. Chemical bleaching negatively affects the flavor of dried whey ingredients, which has established a need for a better understanding of the primary colorant in annatto, norbixin, along with cheese color alternatives. The objective of this study was to determine norbixin partitioning in cheese and whey from full-fat and fat-free Cheddar cheese and to determine the viability of bixin, the nonpolar form of norbixin, as an alternative Cheddar cheese colorant. Full-fat and fat-free Cheddar cheeses and wheys were manufactured from colored pasteurized milk. Three norbixin (4% wt/vol) levels (7.5, 15, and 30 mL of annatto/454 kg of milk) were used for full-fat Cheddar cheese manufacture, and 1 norbixin level was evaluated in fat-free Cheddar cheese (15 mL of annatto/454 kg of milk). For bixin incorporation, pasteurized whole milk was cooled to 55°C, and then 60 mL of bixin/454 kg of milk (3.8% wt/vol bixin) was added and the milk homogenized (single stage, 8 MPa). Milk with no colorant and milk with norbixin at 15 mL/454 kg of milk were processed analogously as controls. No difference was found between the norbixin partition levels of full-fat and fat-free cheese and whey (cheese mean: 79%, whey: 11.2%). In contrast to norbixin recovery (9.3% in whey, 80% in cheese), 1.3% of added bixin to cheese milk was recovered in the homogenized, unseparated cheese whey, concurrent with higher recoveries of bixin in cheese (94.5%). These results indicate that fat content has no effect on norbixin binding or entrapment in Cheddar cheese and that bixin may be a viable alternative colorant to norbixin in the dairy industry.  相似文献   

18.
Stirred-curd Cheddar cheese was made from 460-liter and 2400-liter lots of milk where curd strength at cutting was varied between two firmnesses. Curd rigidity was measured with a device that subjects the gel to oscillatory deformation. Curd firmnesses were selected to encompass the range in commercial operations. With the larger lots of milk, high curd rigidity at cutting increased yield of cheese per unit of milk fat and increased retention of milk fat and casein in 11 lots of cheese made over 9 mo from milk of normal compositional quality. No effects on cheese yield and milk constituent recovery were significant with the smaller lots of milk processed during May when cheese yields and milk constituent concentration were low. Moisture content of cheese was not affected by curd firmness in either series of experiments.  相似文献   

19.
This study compared the effect of coagulum firmness at cutting on composition of 50% reduced-fat Cheddar cheese. Coagulum firmness was determined by subjective evaluation by the cheese maker. Three firmness levels were tested, and these corresponded to average times of coagulant addition to cutting the curd of 25, 48, and 65 min. A slow acid-producing culture was used, and ripening times were altered to give similar curd pH values throughout cheese making. A longer rennet coagulation time (firmer coagulum at cutting) resulted in an increase in cheese moisture as well as an increase in cheese yield. The percentages of fat recovered in the cheese decreased with increasing curd firmness. The percentage of nitrogen recovered in the cheese was similar among the treatments. The amount of whey collected from the curd after milling increased as the coagulum firmness at cutting increased. Higher moisture content and lower pH of cheese made from the firmer curd at cutting contributed to softer, smoother-bodied cheeses, but the Cheddar flavor intensity was not affected.  相似文献   

20.
The aspartic proteinase, chymosin (EC 3.4.23.4) is the principal milk clotting enzyme used in cheese production and is one of the principal proteolytic agents involved in cheese ripening. Varietal differences in chymosin activity, due to factors such as cheese cooking temperature, fundamentally influence cheese characteristics. Furthermore, much chymosin is lost in whey, and further processing of this by-product may require efficient inactivation of this enzyme, with minimal effects on whey proteins. In the first part of this study, the thermal inactivation kinetics of Maxiren 15 (a recombinant chymosin preparation) were studied in skim milk ultrafiltration permeate, whole milk whey and skim milk whey. Inactivation of chymosin in these systems (at pH 6.64) followed first order kinetics with a D45.5 value of 100 +/- 21 min and a z-value of 5.9 +/- 0.3 degrees C. D-Values increased linearly with decreasing pH from 6.64 to 6.2, while z-values decreased as pH decreased from 6.64 to 6.4, but were similar at pH 6.4 and 6.2. Subsequent determination of chymosin activity during manufacture of Cheddar and Swiss-type cheese showed good correlations between predicted and experimental values for thermal inactivation of chymosin in whey. However, both types of cheese curd exhibited relatively constant residual chymosin activity throughout manufacture, despite the higher cooking temperature applied in the manufacture of Swiss cheese. Electrophoretic analysis of slurries made from Cheddar and Swiss cheese indicated decreased proteolysis due to chymosin activity during storage of the Swiss cheese slurry, but hydrolysis of sodium caseinate by coagulant extracted from both cheese types indicated similar levels of residual chymosin activity. This may suggest that some form of conformational change other than irreversible thermal denaturation of chymisin takes place in cheese curd during cooking, or that some other physico-chemical difference between Swiss and Cheddar cheese controls the activity of chymosin during ripening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号