首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Let F(x,y)F(x,y) be a polynomial over a field KK and mm a nonnegative integer. We call a polynomial gg over KK an mm-near solution of F(x,y)F(x,y) if there exists a c∈KcK such that F(x,g)=cxmF(x,g)=cxm, and the number cc is called an mm-value of F(x,y)F(x,y) corresponding to gg. In particular, cc can be 0. Hence, by viewing F(x,y)=0F(x,y)=0 as a polynomial equation over K[x]K[x] with variable yy, every solution of the equation F(x,y)=0F(x,y)=0 in K[x]K[x] is also an mm-near solution. We provide an algorithm that gives all mm-near solutions of a given polynomial F(x,y)F(x,y) over KK, and this algorithm is polynomial time reducible to solving one variable equations over KK. We introduce approximate solutions to analyze the algorithm. We also give some interesting properties of approximate solutions.  相似文献   

4.
5.
A real xx is called hh-bounded computable  , for some function h:N→Nh:NN, if there is a computable sequence (xs)(xs) of rational numbers which converges to xx such that, for any n∈NnN, at most h(n)h(n) non-overlapping pairs of its members are separated by a distance larger than 2-n2-n. In this paper we discuss properties of hh-bounded computable reals for various functions hh. We will show a simple sufficient condition for a class of functions hh such that the corresponding hh-bounded computable reals form an algebraic field. A hierarchy theorem for hh-bounded computable reals is also shown. Besides we compare semi-computability and weak computability with the hh-bounded computability for special functions hh.  相似文献   

6.
We formalize paper fold (origami) by graph rewriting. Origami construction is abstractly described by a rewriting system (O,?)(O,?), where OO is the set of abstract origamis and ?? is a binary relation on OO, that models fold  . An abstract origami is a structure (Π,∽,?)(Π,,?), where ΠΠ is a set of faces constituting an origami, and ∽ and ?? are binary relations on ΠΠ, each representing adjacency and superposition relations between the faces.  相似文献   

7.
Let f(X,Y)∈Z[X,Y]f(X,Y)Z[X,Y] be an irreducible polynomial over QQ. We give a Las Vegas absolute irreducibility test based on a property of the Newton polytope of ff, or more precisely, of ff modulo some prime integer pp. The same idea of choosing a pp satisfying some prescribed properties together with LLLLLL is used to provide a new strategy for absolute factorization of f(X,Y)f(X,Y). We present our approach in the bivariate case but the techniques extend to the multivariate case. Maple computations show that it is efficient and promising as we are able to construct the algebraic extension containing one absolute factor of a polynomial of degree up to 400.  相似文献   

8.
For a field kk with an automorphism σσ and a derivation δδ, we introduce the notion of Liouvillian solutions of linear difference–differential systems {σ(Y)=AY,δ(Y)=BY}{σ(Y)=AY,δ(Y)=BY} over kk and characterize the existence of Liouvillian solutions in terms of the Galois group of the systems. In the forthcoming paper, we will propose an algorithm for deciding if linear difference–differential systems of prime order have Liouvillian solutions.  相似文献   

9.
10.
We consider the problem of solving a linear system Ax=bAx=b over a cyclotomic field. Cyclotomic fields are special in that we can easily find a prime pp for which the minimal polynomial m(z)m(z) for the field factors into a product of distinct linear factors. This makes it possible to develop fast modular algorithms.  相似文献   

11.
Assume that a program pp on input aa outputs bb. We are looking for a shorter program qq having the same property (q(a)=bq(a)=b). In addition, we want qq to be simple conditional to pp (this means that the conditional Kolmogorov complexity K(q|p)K(q|p) is negligible). In the present paper, we prove that sometimes there is no such program qq, even in the case when the complexity of pp is much bigger than K(b|a)K(b|a). We give three different constructions that use the game approach, probabilistic arguments and algebraic arguments, respectively.  相似文献   

12.
13.
This paper concerns construction of additive stretched spanners with few edges for nn-vertex graphs having a tree-decomposition into bags of diameter at most δδ, i.e., the tree-length δδ graphs. For such graphs we construct additive 2δ2δ-spanners with O(δn+nlogn)O(δn+nlogn) edges, and additive 4δ4δ-spanners with O(δn)O(δn) edges. This provides new upper bounds for chordal graphs for which δ=1δ=1. We also show a lower bound, and prove that there are graphs of tree-length δδ for which every multiplicative δδ-spanner (and thus every additive (δ−1)(δ1)-spanner) requires Ω(n1+1/Θ(δ))Ω(n1+1/Θ(δ)) edges.  相似文献   

14.
15.
16.
17.
The ΔΔ-timed uniform consensus is a stronger variant of the traditional consensus and it satisfies the following additional property: every correct process terminates its execution within a constant time ΔΔΔ-timeliness), and no two processes decide differently (uniformity). In this paper, we consider the ΔΔ-timed uniform consensus problem in presence of fcfc crash processes and ftft timing-faulty processes, and propose a ΔΔ-timed uniform consensus algorithm. The proposed algorithm is adaptive in the following sense: it solves the ΔΔ-timed uniform consensus when at least ft+1ft+1 correct processes exist in the system. If the system has less than ft+1ft+1 correct processes, the algorithm cannot solve the ΔΔ-timed uniform consensus. However, as long as ft+1ft+1 processes are non-crashed, the algorithm solves (non-timed) uniform consensus. We also investigate the maximum number of faulty processes that can be tolerated. We show that any ΔΔ-timed uniform consensus algorithm tolerating up to ftft timing-faulty processes requires that the system has at least ft+1ft+1 correct processes. This impossibility result implies that the proposed algorithm attains the maximum resilience about the number of faulty processes. We also show that any ΔΔ-timed uniform consensus algorithm tolerating up to ftft timing-faulty processes cannot solve the (non-timed) uniform consensus when the system has less than ft+1ft+1 non-crashed processes. This impossibility result implies that our algorithm attains the maximum adaptiveness.  相似文献   

18.
19.
This paper deals with the existence and search for properly edge-colored paths/trails between two, not necessarily distinct, vertices ss and tt in an edge-colored graph from an algorithmic perspective. First we show that several versions of the s−tst path/trail problem have polynomial solutions including the shortest path/trail case. We give polynomial algorithms for finding a longest properly edge-colored path/trail between ss and tt for a particular class of graphs and characterize edge-colored graphs without properly edge-colored closed trails. Next, we prove that deciding whether there exist kk pairwise vertex/edge disjoint properly edge-colored s−tst paths/trails in a cc-edge-colored graph GcGc is NP-complete even for k=2k=2 and c=Ω(n2)c=Ω(n2), where nn denotes the number of vertices in GcGc. Moreover, we prove that these problems remain NP-complete for cc-edge-colored graphs containing no properly edge-colored cycles and c=Ω(n)c=Ω(n). We obtain some approximation results for those maximization problems together with polynomial results for some particular classes of edge-colored graphs.  相似文献   

20.
The claw finding problem has been studied in terms of query complexity as one of the problems closely connected to cryptography. Given two functions, ff and gg, with domain sizes NN and MM(N≤M)(NM), respectively, and the same range, the goal of the problem is to find xx and yy such that f(x)=g(y)f(x)=g(y). This problem has been considered in both quantum and classical settings in terms of query complexity. This paper describes an optimal algorithm that uses quantum walk to solve this problem. Our algorithm can be slightly modified to solve the more general problem of finding a tuple consisting of elements in the two function domains that has a prespecified property. It can also be generalized to find a claw of kk functions for any constant integer k>1k>1, where the domain sizes of the functions may be different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号