首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 521 毫秒
1.
我国铜渣资源储量丰富,渣中含有多种有价金属,具有很高的二次利用价值.为了揭示铜渣提铁的碳热还原机理,以无烟煤为还原剂,进行铜渣含碳球团等温还原实验,并对其进行动力学分析.实验设定的还原温度为1 000 ℃、1 050 ℃、1 100 ℃、1 150 ℃和1 200 ℃,碳氧比即nc/no=1.0.结果表明,对于铜渣含碳球团等温还原实验,温度对反应速率有重要影响;该反应主要限速环节为气相扩散,活化能数值为118.059 kJ/mol;对其进行阶段性动力学分析,其活化能在61.54~146.98 kJ/mol范围内,且活化能的数值随着还原度的变化而变化,具体表现为:第1阶段反应活化能数值较小,原因可能是该阶段反应刚开始,原铜渣中含有一些铁氧化物(Fe3O4)先参与了反应;第2阶段反应活化能较高,此时原铜渣中的铁氧化物已基本反应,铁以橄榄石的状态存在,且橄榄石呈液态,致使球团孔隙度降低,气体在球团内的扩散受阻.   相似文献   

2.
在900~1 200℃范围内,通过还原失重试验研究了赤泥含碳球团的还原特性。结果表明,还原得到的金属化球团中铁元素总含量在60.7%以上,金属化率在83.48%以上。赤泥含碳球团的金属化率和还原速率均随温度的升高而增大,赤泥含碳球团的还原速率由碳的气化反应和界面化学反应混合控制,表观活化能为110.16~111.42kJ/mol。  相似文献   

3.
 为实现钒钛磁铁矿资源的高效合理利用,对钒钛磁铁矿含碳球团的还原过程进行了解析,初步建立了动力学控制方程;利用差热分析方法对钒钛磁铁矿的还原熔分历程进行了分析与讨论,认为钒钛磁铁矿的还原可分为煤的氧化、钒钛磁铁矿的直接还原、借助碳的气化反应的直接还原和还原结束4个部分;以攀枝花钒钛磁铁矿为原料,煤为还原剂,考察了反应时间和温度对含碳球团还原度的影响,确定固体产物层内扩散是钒钛磁铁矿含碳球团直接还原反应的控制性环节,计算出其表观活化能为112.13 kJ/mol。  相似文献   

4.
通过热重实验,从还原温度、还原气氛及还原时间三方面对含碳球团的还原特点和动力学进行了研究,采用界面反应模型、三维扩散模型等对含碳球团还原过程进行拟合.研究表明:在本实验条件下,当温度为1100℃、气氛为单一H2、还原时间为60 min时,反应分数达到最大值0.81,还原效果最佳;还原过程中,还原速率先迅速增大,随后逐渐减小;当假设扩散模型为还原过程的限制性环节时,得到的拟合效果最好,反应活化能为93.18 kJ/mol.  相似文献   

5.
在真空条件下,采用等温法对碳热还原氧化锶的动力学进行了研究。研究结果表明:还原温度对碳热还原氧化锶的还原速度影响较大,温度越高,还原速度越大,在温度高于1573 K时,还原较快。根据Arrhenius方程计算出,在1473~1673 K范围内,当碳的气化反应为控制环节时,反应活化能为163.39 kJ·mol-1;界面化学反应为控制环节时,反应活化能为212.29 kJ·mol-1;气相扩散为控制环节时的活化能为315.00~384.46 kJ·mol-1。扩散控制反应时活化能最大,真空条件下碳热还原氧化锶的还原速度由气相扩散控制。  相似文献   

6.
开展了Fe3O4内配石墨球团还原试验,以考察球团的中温还原性。设定温度950~1 100℃,时间低于35min。并采用新建立的还原动力学方程(PKV方程)计算球团的动力学参数。结果表明,球团的还原能力随时间、温度的提高而增加,初始时间段及较低温度下增加幅度相对较大;温度对球团的还原影响很大。球团在19min前后的活化能分别为102.046kJ/mol和86.872kJ/mol。控制环节为界面化学反应,前19min为碳的气化反应,后19min为CO还原Fe3O4。  相似文献   

7.
为了探究含碳球团还原熔分机理,将分析纯的Fe2O3、氧化物和不同还原剂固结成球并进行等温还原实验,研究了温度、还原时间、配碳量、还原剂种类等条件对球团还原熔分行为的影响.进一步采用X射线衍射、扫描电子显微镜等手段表征了含碳球团在不同还原时间的微观结构及物相变化.实验结果表明:焙烧温度过低或过高含碳球团都不能良好熔分,配碳量增加可以提高球团还原和熔分速率,适宜的温度、碳氧摩尔比、还原剂分别是1400℃、1.2和煤粉.含碳球团还原熔分包括直接还原反应、间接还原反应、碳的气化反应、渗碳反应和铁的熔化反应,最后实现渣铁分离.   相似文献   

8.
为研究高碱度电炉粉尘碳热还原反应动力学和反应机制。通过不同温度条件下含碳高碱度电炉粉尘的物相(XRD)解析其物相转变过程。采用热重分析法对不同配碳量和碱度的高碱度电炉粉尘进行热重实验,实验结果表明,配碳量和碱度能促进电炉粉尘碳热还原反应,提高碱度能降低反应所需的温度。最后,通过非等温动力学分析法对高碱度电炉粉尘进行动力学分析,基于KAS法和Coats-Redfern法,确定了主要的动力学参数,根据转化率(α)高碱度电炉粉尘碳热还原过程分为3个阶段:α=0~0.082,α=0.082~0.5和α=0.5~1.0。第1阶段,平均活化能为380.68 kJ/mol,反应由一维扩散控制。第2阶段和第3阶段的平均活化能分别为318.79 kJ/mol和264.42 kJ/mol,其反应均由化学反应控制。  相似文献   

9.
本文研究了碳矿复合团球在900~1150℃氮气氛下还原反应的动力学特征,发现了其还原机现与普通含碳球团不同之处,推导出的动力学速率方程表征了本实验条件下碳复合球团还原反应速度,计算了各段还原反应速度常数K的数值及还原反应的表观活化能△=116.77kj/mol~138.78kj/mol,反应是化学控制的。  相似文献   

10.
本文通过阿仑尼乌斯公式对磁铁矿原料润磨前后球团氧化反应的活化能进行了研究 ,研究表明 :原料不润磨 ,球团氧化反应活化能为 3 3 96kJ/mol;原料经润磨后 ,球团氧化反应活化能为 3 1 68kJ/mol。这说明润磨降低了球团氧化反应的活化能  相似文献   

11.
为了揭示硼铁精矿的碳热还原机理,以高纯石墨为还原剂,进行硼铁精矿含碳球团等温还原实验,并采用积分法进行动力学分析.还原温度分别设定为1000、1050、1100、1150、1200、1250和1300℃,配碳量即C/O摩尔比=1.0.当还原度为0.1<α<0.8时,温度对活化能和速率控制环节有重要影响:还原温度≤1100℃时,平均活化能为202.6 k J·mol-1,还原反应的速率控制环节为碳的气化反应;还原温度>1100℃时,平均活化能为116.7 k J·mol-1,为碳气化反应和Fe O还原反应共同控制.当还原度α≥0.8时(还原温度>1100℃),可能的速率控制环节为碳原子在金属铁中的扩散.碳气化反应是含碳球团还原过程中主要速率控制环节,原因在于硼铁精矿中硼元素对碳气化反应具有较强烈的化学抑制作用.   相似文献   

12.
通过分析生物质合成气气氛下,不同组分复合球团(添加和未添加生物质)的还原速率、还原度、表面微观结构和失重变化规律.对球团中添加生物质的作用机理以及含生物质球团还原过程的限制性环节展开研究.添加生物质的复合球团表面结构比无生物质球团疏松,孔隙率高,有利于后续还原的热质传递,增加产物还原度,降低反应活化能;复合球团的还原以收缩核方式进行,在1123~1323K温度范围内,界面化学反应是两种球团还原反应的主要控速环节;添加生物质后,有利于界面化学反应的进行.使得球团的还原表观活化能由95.448kJ·mol-1降低到68.131kJ·mol-1.   相似文献   

13.
Experiments were carried out by adding CaF2 and NaF as catalysts in an Ar atmosphere to study the isothermal reduction kinetics of vanadium titano-magnetite carbon composite pellets under high temperature in the range from 1 473 to 1 673 K. The scanning electron microscope (SEM) was used to characterize the microstructure of product. By analyzing reduction mechanism, it was found that the rate controlling step was gas diffusion, and the activation energy was 178.39 kJ/mol without adding any catalysts. Adding CaF2 or NaF of 3% to vanadium titano-magnetite carbon composite pellets can decrease the apparent activation energy of reduction, and the decrease extent was 14.95 and 15.79 kJ/mol, respectively. In addition, temperature was an important factor influencing on reaction rate.  相似文献   

14.
Kinetic studies on smelting reduction of unreduced fluxed composite pellets (FCP) and fluxed composite pre-reduced iron ore pellets (FCRIP) have been carried out in an induction furnace. The pellets are charged into the slag layer floating on the carbon saturated molten iron bath in a graphite crucible. The slag basicity was however varied such that it has the same value as that of the pellets charged. The temperature of the slag is varied within the range of 1623K to 1823K for the pellets of basicity 2.0. Kinetic studies show a mixed kinetic model of both diffusion and chemical reaction controlled. While the smelting of FCRIP follows the model expressed as G(or) = 1-(2/3)(α) -(1-α)2/3, the unreduced FCP pellets initially follow the diffusion controlled model of G(α) = α2 followed by a chemical reaction controlled first order model of -ln(1-α) at the latter stages of smelting reduction, where α denotes the degree of reduction. The basicity dependence on the kinetics is not very significant. Comparison of the activation energy values explains that the smelting reduction with pre-reduced pellets seems to be a rather less energy intensive process.  相似文献   

15.
摘要:研究了不锈钢尘泥球团在温度分别为1100、1150、1200、1250℃时的煤基直接还原反应动力学。采用随机成核和随后生长、化学反应控制、相界面反应和n(n=1、2、3、4)维扩散模型及其相应动力学机制函数对反应过程进行拟合,并结合X-射线衍射(XRD)、扫描电镜(SEM)、能谱分析(EDS)等手段对不锈钢尘泥球团煤基直接还原过程的物相组成、显微结构及元素分布进行表征和分析。研究结果表明:反应初期铁氧化物还原速率较快,随后逐渐减慢,当反应至40min后,反应趋向于平衡。在1100~1250℃温度范围内反应遵从随机成核和随后生长及A1(α)=-ln(1-α)机制函数,碳的气化反应和界面化学反应是尘泥球团煤基直接还原反应的限制性环节,该反应活化能E为47.423kJ/mol,线性相关系数为0996。  相似文献   

16.
 The kinetics of isothermal reduction of the carbon bearing pellets, which were mainly composed of Bayanobo complex iron ore and pulverized coal, was investigated by thermogravimetry at the temperature of 1273-1673 K. The effects of xC/xO and the atmospheres on the extent of reduction also were investigated. The results indicate that the fractional reaction increased proportionally with temperature increasing and heating temperature is the significant influence factor to the reaction of carbon bearing pellets. The optimum xC/xO is 1. 2 and the effect of atmosphere on the reduction of iron oxides is almost negligible. The results can be interpreted that the reaction was initially controlled by a mixed controlled mechanism of carbon gasification and interface chemical reaction, and in the later stage, interface chemical reaction became the rate-controlling step. Apparent activation energy values of reduction at different levels of fractional reaction were calculated. Before F (fraction of reaction)=0. 5, the apparent activation energy ranges from 66. 39 to 75. 64 kJ/mol, while after F=0. 5, the apparent activation energy is 80. 98 to 85. 37 kJ/mol.  相似文献   

17.
《钢铁冶炼》2013,40(5):334-340
Abstract

The aim of this work is to study the reaction rate and the morphology of intermediate reaction products during iron ore reduction when iron ore and carbonaceous materials are agglomerated together with or without Portland cement. The reaction was performed at high temperatures, and used small size samples in order to minimise heat transfer constraints. Coke breeze and pure graphite were the carbonaceous materials employed. Portland cement was applied as a binder, and pellet diameters were in the range 5·6–6·5 mm. The experimental technique involved the measurement of the pellet weight loss, as well as the interruption of the reaction at different stages, in order to submit the partially reduced pellet to scanning electron microscopy. The experimental temperature was in the range 1423–1623 K, and the total reaction time varied from 240 to 1200 s. It was observed that above 1523 K the formation of liquid slag occurred inside the pellets, which partially dissolved iron oxides. The apparent activation energies obtained were 255 kJ mol–1 for coke breeze containing pellets, and 230 kJ mol–1 for those pellets containing graphite. It was possible to avoid heat transfer control of the reaction rate up to 1523 K by employing small composite pellets.  相似文献   

18.
The self-reduction experiment of manganese-rich slag briquette containing carbon was carried out in a hightemperature carbon tube furnace.The main factors affecting the reduction rate were analyzed,and the kinetic model of reduction was established.The results show that the increase of basicity of briquette has an obvious effect on improving reduction rate.When the carbon ratio of briquettes is 1.2and its basicity is 1.0,the reduction rate can reach90%.It can accelerate reduction process and decrease reduction time when the appropriate flux CaF2 is added to the briquette.The apparent activation energy of chemical reaction is 24.07kJ/mol,and the apparent activation energy of internal diffusion is 107.55kJ/mol by calculation.Therefore,the reduction rate of briquette is determined by the mass transfer of CO in the product layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号