首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main aim of this paper is to develop kenaf-glass (KG) fibres reinforced unsaturated polyester hybrid composite on a source of green composite using sheet moulding compound process. Unsaturated polyester resin (UPE) and KG fibres in mat form were used at a ratio of 70:30 (by volume) with treated and untreated kenaf fibre. The kenaf fibre was treated with 6% sodium hydroxide (NaOH) diluted solution for 3 h using mercerization method. The hybrid composites were tested for flexural, tensile and Izod impact strength using ASTM D790-03, ASTM D618 and ASTM D256-04 standards respectively. The highest flexural, tensile and impact strength were obtained from treated kenaf with 15/15 v/v KG fibres reinforced UPE hybrid composite in this investigation.Scanning electron microscopy fractography showed fibre cracking, debonding and fibre pulled-out as the main fracture mode of composites and kenaf treated 15/15 v/v KG reinforced hybrid composite exhibited better interfacial bonding between the matrix and reinforcement compared to other combinations.  相似文献   

2.
The role of interfacial adhesion between fibre and matrix on the residual strength behaviour of carbon-fibre-reinforced metal laminates (FRMLs) has been investigated. Differences in fibre/matrix adhesion were achieved by using treated and untreated carbon fibres in an epoxy resin system. Mechanical characterisation tests were conducted on bulk composite specimens to determine various properties such as interlaminar shear strength (ILSS) and transverse tension strength which clearly illustrate the difference in fibre/matrix interfacial adhesion. Scanning electron microscopy confirmed the difference in fracture surfaces, the untreated fibre composites showing interfacial failure while the treated fibre composites showed matrix failure. No clear differences were found for the mechanical properties such as tensile strength and Young's modulus of the FRMLs despite the differences in the bulk composite properties. A reduction of 7·5% in the apparent value of the ILSS was identified for the untreated fibre laminates by both three-point and five-point bend tests. Residual strength and blunt notch tests showed remarkable increases in strength for the untreated fibre specimens over the treated ones. Increases of up to 20% and 14% were found for specimens with a circular hole and saw cut, respectively. The increase in strength is attributed to the promotion of fibre/matrix splitting and large delamination zones in the untreated fibre specimens owing to the weak fibre/matrix interface.  相似文献   

3.
The impact and flexural post-impact behaviour of ternary hybrid composites based on epoxy resin reinforced with different types of fibres, basalt (B), flax (F), hemp (H) and glass (G) in textile form, namely FHB, GHB and GFB, has been investigated. The reinforcement volume employed was in the order of 21–23% throughout. Laminates based exclusively on basalt, hemp and flax fibres were also fabricated for comparison. Hybrid laminates showed an intermediate performance between basalt fibre reinforced laminates on the high side, and flax and hemp fibre reinforced laminates on the low side. As for impact performance, GHB appears to be the worst performing hybrid laminate and FHB slightly overperforms GFB. In general, an increased rigidity can be attributed to all hybrids with respect to flax and hemp fibre composites. The morphological study of fracture by SEM indicated the variability of mode of fracture of flax and hemp fibre laminates and of the hybrid configuration (FHB) containing both of them. Acoustic emission monitoring during post-impact flexural tests confirmed the proneness to delamination of FHB hybrids, whilst they were able to better withstand impact damage than the other hybrids.  相似文献   

4.
The research dealt with the relation between damage and tension–tension fatigue residual strength (FRS) in a quasi-isotropic carbon fibre reinforced epoxy resin laminate. The work was organized in two phases: during the first one, composite laminates were damaged by means of an out-of-plane quasi-static load that was supposed to simulate a low velocity impact; in the second phase, fatigue tests were performed on damaged and undamaged specimens obtained from the original composite laminates. During the quasi-static transverse loading phase, damage progression was monitored by means of acoustic emission (AE) technique. The measurement of the strain energy accumulated in the specimens and of the acoustic energy released by fracture events made it possible to estimate the amount of induced damage and evaluate the quasi-static residual tensile strength of the specimens. A probabilistic failure analysis of the fatigue data, reduced by the relative residual strength values, made it possible to relate the FRS of damaged specimens with the fatigue strength of undamaged ones.  相似文献   

5.
During the past decades, increasing demand in aircraft industry for high-performance, lightweight structures have stimulated a strong trend towards the development of refined models for fibre-metal laminates (FMLs). Fibre metal laminates are hybrid composite materials built up from interlacing layers of thin metals and fibre reinforced adhesives. The most commercially available fibre metal laminates (FMLs) are ARALL (Aramid Reinforced Aluminium Laminate), based on aramid fibres, GLARE (Glass Reinforced Aluminium Laminate), based on high strength glass fibres and CARALL (Carbon Reinforced Aluminium Laminate), based on carbon fibres. Taking advantage of the hybrid nature from their two key constituents: metals (mostly aluminium) and fibre-reinforced laminate, these composites offer several advantages such as better damage tolerance to fatigue crack growth and impact damage especially for aircraft applications. Metallic layers and fibre reinforced laminate can be bonded by classical techniques, i.e. mechanically and adhesively. Adhesively bonded fibre metal laminates have been shown to be far more fatigue resistant than equivalent mechanically bonded structures.  相似文献   

6.
《Composites Part B》2000,31(3):199-207
Composite panels are in common use, especially in aeronautic and aerospace structures due to their high strength/weight and stiffness/weight ratio. The out-of-plane impact loading is considered potentially dangerous mainly because the damage may be left undetected and because the loading itself acts in the through-the-thickness direction of the laminated composite panel. This direction is the weakest in the composite since no fibres are present in that direction. The impact loading can lead to damage involving three modes of failure: matrix cracking, delamination and eventually fibre breakage for higher impact energies. Even when no visible impact damage is observed at the surface on the point of impact, matrix cracking and delamination can occur, and the residual strength of the composite is considerably reduced. The objective of this study is to determine the mechanisms of the damage growth of impacted composite laminates when subjected to impact loading. For this purpose a series of impact tests were carried out on composite laminates made of carbon fibre reinforced epoxy resin matrix. An instrumented drop-weight-testing was used together with a C-scan ultrasonic device for the damage identification. Two stacking sequences of two different epoxy resins and carbon fibres, representative of four different elastic behaviours with a different number of interfaces were used. A numerical evaluation of these specimens was also carried out, using static analysis only. Results showed that the delaminated area due to impact loading depends on the number of interfaces between plies. Two failure mechanisms due to impact were identified, which are influenced by the stacking sequence and by the thickness of the panels.  相似文献   

7.
复合材料层合板低速冲击损伤容限的改进方法和影响因素   总被引:4,自引:0,他引:4  
依据笔者在这方面的研究和前人的工作,以及现有各种改进炭纤维增强树脂基复合材料冲击性能的方法,分析和总结了复合材料层合结构冲击损伤以及损伤容限,其中主要是冲击后压缩强度的重要影响因素,并且讨论了这些因素的作用。  相似文献   

8.
Effects of fibre/matrix adhesion and residual strength of notched polymer matrix composite laminates (PMCLs) and fibre reinforced metal laminates (FRMLs) were investigated. Two different levels of adhesion between fibre and matrix were achieved by using the same carbon fibres with or without surface treatments. After conducting short-beam shear and transverse tension tests for fibre/matrix interface characterisation, residual strength tests were performed for PMCLs and FRMLs containing a circular hole/sharp notch for the two composite systems. It was found that laminates with poor interfacial adhesion between fibre and matrix exhibit higher residual strength than those with strong fibre/matrix adhesion. Major failure mechanisms and modes in two composite systems were studied using SEM fractography. The effective crack growth model (ECGM) was also applied to simulate the residual strength and damage growth of notched composite laminates with different fibre/matrix adhesion. Predictions from the ECGM were well correlated with experimental data.  相似文献   

9.
Composite panels are widely used in aeronautic and aerospace structures due to their high strength/weight ratio. The stiffness and the strength in the thickness direction of laminated composite panels is poor since no fibres are present in that direction and out-of-plane impact loading is considered potentially dangerous, mainly because the damage may be left undetected. Impact loading in composite panels leads to damage with matrix cracking, inter-laminar failure and eventually fibre breakage for higher impact energies. Even when no visible impact damage is observed at the surface on the point of impact, matrix cracking and inter-laminar failure can occur, and the carrying load of the composite laminates is considerably reduced. The greatest reduction in loading is observed in compression due to laminae buckling in the delaminated areas. The objective of this study is to determine the mechanisms of the damage growth of impacted composite laminates when subjected to compression after impact loading. For this purpose a series of impact and compression after impact tests were carried out on composite laminates made of carbon fibre reinforced epoxy resin matrix. An instrumented drop-weight-testing machine and modified compression after impact testing equipment were used together with a C-scan ultrasonic device for the damage identification. Four stacking sequences of two different epoxy resins in carbon fibres representative of four different elastic behaviours and with a different number of interfaces were used. Results showed that the delaminated area due to impact loading depends on the number of interfaces between plies. Two buckling failure mechanisms were identified during compression after impact, which are influenced more by the delamination area than by the stacking sequence.  相似文献   

10.
The mechanical properties such as tensile, compressive, flexural, impact strength and water absorption of the alkali treated continuous Agave fibre reinforced epoxy composite (TCEC) and untreated continuous Agave fibre reinforced epoxy composite (UTCEC) were analysed. A comparison of the surfaces of TCEC and UTCEC composites was carried out by dynamic mechanical analysis (DMA), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermomechanical properties of the composite reinforced with sodium hydroxide (NaOH) treated Agave fibres were considerably good as the shrinkage of the fibre during alkali treatment had facilitated more points of fibre resin interface. The SEM micrograph and FTIR spectra of the impact fracture surfaces of TCEC clearly demonstrate the better interfacial adhesion between fibre and the matrix. In both analyses the TCEC gave good performance than UTCEC and, thus, there is a scope for its application in light weight manufacture in future.  相似文献   

11.
A major limitation to the spreading of natural fibre reinforced composites in semi-structural components is their unsatisfactory impact performance. As a potential solution, the production of synthetic/plant fibre hybrid laminates has been explored, trying to obtain materials with sufficient impact properties, while retaining a reduced cost and a substantial environmental gain. This study explores the effects of hybridisation of basalt fibre on post-impact behaviour and damage tolerance capability of hemp fibre reinforced composites. All reinforced laminates were impacted in a range of energies (3, 6, and 9 J) and subjected to both quasi-static and cyclic flexural tests with a step loading procedure. The tests have also been monitored by acoustic emission (AE), which has confirmed the existence of severe limitations to the use of natural fibre reinforced composites even when impacted at energies not so close to penetration and the enhanced damage tolerance offered by the hybridisation with basalt fibers.  相似文献   

12.
The interlaminar shear strength, interlaminar fracture energy, flexural strength and modulus of extended-chain polyethylene/epoxy composites are improved substantially when the fibres are pretreated in an ammonia plasma to introduce amine groups on to the fibre surface. These property changes are examined in terms of the microscopic properties of the fibre/matrix interface. Fracture surface micrographs show clean interfacial tensile and shear fracture in composites made from untreated fibres, indicative of a weak interfacial bond. In contrast, fracture surfaces of composites made from ammonia plasma-treated fibres exhibit fibre fibrillation and internal shear failure as well as matrix cracking, suggesting stronger fibre/matrix bonding, in accord with the observed increase in interlaminar fracture energy and shear strength. Failure of flexural test specimens occurs exclusively in compression, and the enhanced flexural strength and modulus of composites containing plasma-treated fibres result mainly from reduced compressive fibre buckling and debonding due to stronger interfacial bonding. Fibre treatment by ammonia plasma also causes an appreciable loss in the transverse ballistic impact properties of the composite, in accord with a higher fibre/matrix interfacial bond strength.  相似文献   

13.
This experimental study focuses on the toughness of a thermoplastic composite, namely, poly ether-ether-ketone (PEEK) reinforced with 60% by volume of continous carbon fibres (APC 2). Toughness is assessed using both comparative and intrinsic techniques and a critical discussion of the two approaches is presented.The comparative toughness of cross-ply and quasi-isotropic sheets of APC 2 is studied using a damage tolerance test (compression after impact) and by using an instrumented falling weight impacr test over a range of temperatures. Intrinsic toughness is discussed by applying fracture mechanics techniques to unidirectional laminates. Double cantilever beam and three-point flexure tests are used, the latter being performed in six different crack directions. Fracture toughness results are presented for APC 2 and unreinforced PEEK.An ultrasonic C-scan on impacted specimens and scanning electron microscopy on fracture surfaces are used to explore further the mechanisms of fracture, e.g. delamination, fibre breakage and matrix cracking.  相似文献   

14.
Two woven fabric laminates, one based on basalt fibres, the other on E-glass fibres, as a reinforcement for vinylester matrix, were compared in terms of their post-impact performance. With this aim, first the non-impacted specimens were subjected to interlaminar shear stress and flexural tests, then flexural tests were repeated on laminates impacted using a falling weight tower at three impact energies (7.5, 15 and 22.5J). Tests were monitored using acoustic emission analysis of signal distribution with load and with distance from the impact point. The results show that the materials have a similar damage tolerance to impact and also their post-impact residual properties after impact do not differ much, with a slight superiority for basalt fibre reinforced laminates. The principal difference is represented by the presence of a more extended delamination area on E-glass fibre reinforced laminates than on basalt fibre reinforced ones.  相似文献   

15.
Results are presented from the ReCoVeR project on the regeneration of the strength of thermally conditioned glass fibres. Thermal recycling of end-of-life glass fibre reinforced composites or composite manufacturing waste delivers fibres with virtually no residual strength or value. Composites produced from such fibres also have extremely poor mechanical performance. Data is presented showing that a short hot sodium hydroxide solution treatment of such recycled fibres can more than triple their strength and restore their ability to act as an effective reinforcement in second life composite materials. The implications of these results for real materials reuse of recycled glass fibres as replacement for pristine reinforcement fibres are discussed.  相似文献   

16.
《Composites Part A》2002,33(11):1487-1495
Low velocity impacts to fibre reinforced plastic composites cause a pattern of damage consisting in general of delamination, fibre breakage and matrix cracking. Such damage is accidental and may go unnoticed; therefore composite structures must be designed assuming impact damage exists. Previous work on flat composite laminates has resulted in a reasonable understanding of the mechanisms of compressive strength reduction. There are, however, many instances where curved laminates are used in structures where impact is likely. Furthermore, due to the mechanisms of strength reduction, it may be expected that curvature would have a significant effect on the behaviour of the laminates.The work described here consists of experimental measurement of the post-impact compressive strength of curved GFRP laminates. The laminates were of 8 plies of 0.3 mm thick pre-impregnated glass fibre/epoxy tape in a (0, ±45, 0°)s lay-up. Each laminate was 200 mm in length by 50 mm wide with the plane of curvature normal to the length. Laminates were impacted on the convex surface of the laminate by dropping a steel mass from 1 m vertically above it.Impacted laminates were loaded in compression and the out-of-plane displacements of the top and bottom surfaces were recorded. Final failure was typically due to fibre breakage occurring through the centre of the impacted area of the laminate. Possible differences in the impact response, and measurable differences in the sizes of the impact damage area, were found to arise from these curvatures, and differences were observed in their post-impact buckling behaviour. However, perhaps unexpectedly, the post-impact compressive strength for a curved laminate was found to be similar to that for a flat laminate. The failure loads for the impact damage laminates are shown to be comparable with those for laminates containing artificial delaminations.  相似文献   

17.
《Composites》1994,25(6):431-437
This paper examines the development of microstructural damage in a glass-reinforced polymer (grp) laminate subjected to explosive shock loading in water. GRP is commonly used in small naval vessels, and may be subjected to underwater explosions. In the experiments, the laminates were exposed to increasing amounts of shock loading produced by underwater explosions. The laminates were backed with either water or air to modify the amount of bending experienced under loading, with the air-backed laminates having the higher amount of bending. Examination of the grp microstructure by optical and scanning electron microscopy after shock testing failed to reveal any damage to either the polymer matrix or glass fibres when the laminate was backed with water. In contrast, when the laminate was backed with air, small cracks were produced in the polymer matrix at low shock pressures. Raising the shock pressure above a threshold limit caused complete failure of the laminate by cracking in the polymer matrix, cracking of the glass fibres, and delamination of the glass fibres from the polymer. The differences in the shock resistance of the water- and air-backed grp are discussed. Measurements of the residual tensile fracture strength of the laminates after shock loading are also presented. The fracture strength of the water-backed laminate was not affected by shock, but the fracture strength of the air-backed laminate deteriorated with the onset of glass fibre breakage and delamination in the grp microstructure.  相似文献   

18.
基于连续损伤力学,对弹丸冲击复合材料多层板靶的变形-损伤过程给出了必要的基本方程,进行了三维有限元分析.将靶板处理为具有材料各向异性和结构非均匀性;冲击引起的微损伤是各向异性的,造成材料的非线性;冲击造成的局部大变形,构成几何非线性.宏观损伤(包括层内基体开裂、纤维断裂和层间分层)在有限元分析中用节点分裂法处理.钢质弹丸假设是线弹性的,不考虑它在冲击过程中的损伤.计算结果表明,采用本文中提出的方法,能较好地模拟复合材料层合板受弹丸冲击时的损伤、变形过程.  相似文献   

19.
The go-green concept results in multipoint focus towards materials made from nature; easily decomposable and recyclable polymeric materials and their composites along with natural fibres ignited the manufacturing sectors to go for higher altitudes in engineering industries. This is due to the health hazard and environmental problems faced in manufacturing and disposal of synthetic fibres. This study was undertaken to analyse the suitability of new natural fibre as an alternative reinforcement for composite materials. In this paper, tensile, flexural and impact test is made for the woven alovera and kenaf (AK), sisal and kenaf (SK), alovera, sisal and kenaf fibre hybrid epoxy composites (ASK). The composite laminates are made through a hand-layup process. The surface analysis is studied through scanning electron microscopy. From the investigation the SK hybrid composite shows good tensile property, AK hybrid composite shows better flexural property and the best impact strength is observed for ASK hybrid composite. The natural fibres slowly replace the synthetic fibres from its environmental impact, marching towards a revolution in engineering materials.  相似文献   

20.
The use of plants fibre reinforced composites has continuously increased during recent years. Their low density, higher environmental friendliness, and reduced cost proved particularly attractive for low-tech applications e.g., in building, automotive and leisure time industry. However, a major limitation to the use of these materials in structural components is unsatisfactory impact performance. An intermediate approach, the production of glass/plant fibre hybrid laminates, has also been explored, trying to obtain materials with sufficient impact properties, whilst retaining a reduced cost and a substantial environmental gain. A survey is given on some aspects, crucial for the use of glass/plant fibre hybrid laminates in structural components: performance of hybrids when subjected to impact testing; the effect of laminate configuration, manufacturing procedure and fibre treatment on impact properties of the composite. Finally, indications are provided for a suitable selection of plant fibres with minimal extraction damage and sufficient toughness, for introduction in an impact-resistant glass/plant fibre hybrid laminate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号