首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to improve optical property of the multi-walled carbon nanotubes (MWNTs), MWNTs were decorated with europium oxide (Eu2O3) nanoparticles by using co-deposition method. The MWNTs/Eu2O3 composites were examined by XRD, scanning electron microscopy, transmission electron microscopy, and VUV-Vis Luminescence spectroscopy and citric acid (CA) molecules were introduced onto the surface of MWNTs. The results show that there are many oxygenated functional groups on the surface of the MWNTs after the treatment of mixture acid, such as carboxy, hydroxl, carbony and amidocyanogen. The results of electron microscopy illuminate that the MWNTs are coated by nano-europium oxide after annealed at 750℃. The MWNTs/Eu2O3 composite emits much strong red light at about 610 nm under UV excitation.  相似文献   

2.
3.
We fabricated thin-film field-effect transistors (TF-FETs) using thin multi-walled carbon nanotubes (t-MWCNTs) and poly (methyl methacrylate) (PMMA) composites as the active layer. The gate-dependent current–voltage characteristics, the current on/off ratio (Ion/off), and the dc conductivity (σdc) were measured as a function of various weight (wt.%) of t-MWCNTs. The typical p-type FET characteristics were observed. We found that the field-effect Ion/off increased rapidly for TF-FETs with a wt.% of t-MWCNTs below 0.6. For the TF-FETs with a wt.% of t-MWCNT above 0.6, the Ion/off was relatively low. From the measured σdc as a function of the wt.% of t-MWCNTs, the percolation threshold (pc) was observed to be approximately 0.6 wt.% for the t-MWCNT composites. We infer that the TF-FET characteristics are closely related to the pc for the charge conduction of the t-MWCNTs composites.  相似文献   

4.
Rare earth fluoride EuF3 and TbF3 were coated on the multi-walled carbon nanotubes (MWNTs) via the intermediate of noncovalent hydrophobic interactions of the MWNTs surface with sodium dodecyl sulfate (SDS).They were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). The nanoparticle sizes of metal fluorides and sulfides on MWNTs are less than 20 nm. The photo physical properties of the composites were investigated, which indicated the composites exhibited the optical transitions within the 4f shell of the rare earth ions.  相似文献   

5.
6.
The characterization of electrical property of multi-walled carbon nanotubes (MWCNTs) on a nanometer scale is essential for their potential application in nano-electronic devices. The MWCNTs were synthesized on Fe2O3/SiO2/Si substrate and Pt plate substrate by simple thermal chemical vapor deposition (STCVD) technique and the electrical measurements of individual MWCNT grown on silicon substrate and Pt plate substrate were performed by home-made 'nano-manipulator', respectively. According to current-voltage curves obtained in the experiments the current density that the MWCNTs can carry is calculated to be about 10^7 A/cm^2, which is much larger than that of normal metals.  相似文献   

7.
Aluminum (Al)/carbon nanotube (CNT) composite films were fabricated by sputtering pure Al on the surface of aligned multi-walled CNT arrays. Heat treatment was performed in the temperature range 400–950 °C. The interfacial reaction between the Al and the CNTs was investigated by annealing the samples at various temperatures. The results indicated that aluminum carbide (Al4C3) was formed at the interface between the Al and CNT layers, and microscopy observation revealed that the reaction generally occurred at locations containing an amorphous carbon coating, at defect sites, and at open ends of CNTs. Because the nanosized CNTs are precursors for carbide formation, the Al4C3 formed is also nanoscale in size. The carbide formed on the surface as well as on the tips of the CNTs improves the interfacial interaction between the CNTs and the Al layers. This also contributes to the enhancement of the mechanical properties of the composite. Our investigation demonstrated that chemical vapor deposited CNTs are a suitable candidate as reinforcing material for Al and other metal matrices.  相似文献   

8.
Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.  相似文献   

9.
Mg/Fe oxide nanotubes decorated with nitrogen-doped carbon nanotubes (CNx) were fabricated by catalytic chemical vapor deposition of ethylenediamine on the outer surface of oxide nanotubes. Mg/Fe oxide nanotubes were prepared using a 3:1 molar precursor solution of Mg(NO3)2 and Fe(NO3)3 and anodic aluminum oxide as the substrate. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometer (VSM). The XRD pattern shows that the oxide nanotubes are made up of MgO and Fe2O3. TEM and SEM observations indicate the oxide nanotubes are arrayed roughly parallel to each other, and the outer surface of oxide nanotubes are decorated with CNx. XPS results show the nitrogen-doped level in CNx is about 7.3 at.%. Magnetic measurements with VSM demonstrate the saturated magnetization, remanence and coercivity of oxide nanotubes are obvious improved after being decorated with CNx.  相似文献   

10.
High-purity vertically aligned carbon nanotubes (CNTs) were prepared on a quartz substrate by thermal chemical vapour deposition (CVD). The as-prepared carbon nanotubes have an outer diameter of 40–60 nm and a length of 70–80 μm. HRTEM observation revealed that there were compartment structures in the carbon nanotubes. The vertically aligned CNTs exhibit a high reversible lithium storage capacity of 950 mAh/g in lithium-ion cells.  相似文献   

11.
Nitrogen doped multiwalled carbon nanotubes (CNxNTs) with high yield and purity have been successfully prepared from n-propylamine precursor with CoxMg1−xMoO4 catalyst. The maximum yield of the CNxNTs is 920%. SnO2 and CeO2 nanoparticles are decorated on the surface of CNxNTs without any acid treatment due to the inherent interface activity. The TEM images reveal that SnO2 and CeO2 nanoparticles were anchored on the surface of the CNxNTs uniformly, and the XPS results indicate that the doped nitrogen atoms of CNxNTs play significant roles in immobilizing SnO2 and CeO2 nanoparticles, and the mechanism of the composite process has been discussed. The electrooxidation performance of the composites for NO at the modified electrodes was investigated. The CNxNTs-based composites show greater activity and sensitivity than the conventional CNTs-based composites for NO electrooxidation, which render them excellent electrode materials for NO detection and other potential applications.  相似文献   

12.
The characteristics of interface between fiber reinforcement and matrix have a strong influence on the properties of a composite material. Multiwalled carbon nanotubes were grown on carbon fibers by catalytic decomposition of acetylene using thermal chemical vapor deposition technique at 700 °C to modify the fiber surface. Unidirectional multi-scale composites were fabricated using these carbon nanotubes grown fibers with epoxy matrix. As the nanotubes were directly grown on the fibers they get strongly attached with the fibers thus modifying their surface condition which in turn alters the fiber/matrix interface. Modification of the fiber/matrix interface is therefore expected to change the properties of composites. The compressive strengths of these composites were measured which showed a significant enhancement of 43% and 94% in the longitudinal and transverse compressive strengths respectively as compared to composites made of carbon fibers which underwent a similar thermal cycle but without carbon nanotubes growth. The morphology of CNTs grown on carbon fibers was examined at nano-level using HRTEM which showed growth of carbon nanotubes with different morphology and diameter ranging from 5-50 nm.  相似文献   

13.
Carbon nanotubes(CNTs) decorated with palladium were synthesized and applied to hydrogen storage of gas phase. The results show that the amount of hydrogen storage of the decorated CNTs is up to 3.9 % (mass fraction), of which, almost 85% H2 can be desorbed at ambient temperature and pressure, while the non-decorated CNTs has a poor performance of hydrogen storage(only about 0.5% H2, mass fraction). These indicate that it is feasible to enhance the performance of hydrogen storage of CNTs by further decoration with hydrogen-storing metals or alloys.  相似文献   

14.
Novel material with peculiar properties can be obtained by introducing foreign materials into the inner cavity of carbon nanotubes. It has been suggested that the materials encapsulated into the hollow regions of carbon nanotubes could result in a significant change of the properties of these small particles, forming new hybrid composites with extraordinary properties. In this short communication, filling of carbon nanotubes with manganese oxide by wet chemical method is demonstrated. Transmission electron microscopy (TEM) result showed the hollow structure of carbon nanotubes were filled with manganese oxide. Energy dispersive X-rays (EDX) spectra elucidate the presence of manganese oxide in the filled carbon nanotubes whereas SEM result showed that manganese oxide is not crystallized at the outer surface of carbon nanotubes.  相似文献   

15.
Electrochemical properties of Mg-based alloys containing carbon nanotubes   总被引:5,自引:0,他引:5  
In this work, effects of partial substitution of Mg, Ni with AB2 in Mg-based alloy and subsequent surface modification by further ball-milling with carbon nanotubes (CNTs) on electrochemical properties were investigated. Mg1.9(AB2)0.1Ni0.8 (AB2=LaNi2, LaNiCo and LaNiMn) alloys were prepared by solid-state diffusion method, the nanocrystalline Mg-based alloys were prepared by ball-milling the mixture of obtained Mg1.9(AB2)0.1Ni0.8 alloys and nickel powder. It was found that the electrochemical capacities of nanocrystalline Mg1.9(AB2)0.1Ni1.8 alloys were measured to be 460–490 mAh/g. The nanocrystalline Mg-based alloys containing carbon nanotubes (10 wt.%) obtained by ball-milling after 60 min were demonstrated to show improved electrochemical properties with respect to the original nanocrystalline Mg-based alloys. The electrochemical reaction activity was detected by electrochemical impedance spectra (EIS). Raman and X-ray photoelectron spectroscopy (XPS) proved the interaction between Mg1.9(AB2)0.1Ni1.8 alloys and carbon nanotubes after ball-milling, which resulted in an increase in the surface Ni/Mg ratio.  相似文献   

16.
The allotropic forms of carbon (amorphous and polycrystalline graphite, carbon black, fullerenes, nanotubes, graphene) exhibit a large variety of charge transport properties which have been stimulating fundamental and applied research for the development of new devices based on micro and nano-sized electronic systems. Carbon based nanocomposites offer the possibility to improve the device performances and to develop novel multifunctional material systems by combining the properties of each individual phase. In this paper we review the electrical properties of carbon materials and some of the most exciting carbon based nanocomposites, as well as their potential technological applications. First, the electrical properties of amorphous and polycrystalline graphitic materials and those of their related nanocomposites materials are discussed. Second, an overview of the state-of-art on research and applications of carbon nanotube-based composites is presented. Third, we discuss briefly the emerging area of research related to graphene materials. Finally, the electrical properties and applications of conducting carbon black aggregates and carbon black/polymer composites are overviewed.  相似文献   

17.
Electroless Cu plating was used for flake G powder and CNTs, Cu-G-CNTs (copper/graphite/carbon nanotubes) composites were manufactured by means of powder metallurgical method. The influences of CNTs on the mechanical properties, conductivity properties, friction, and wear performance of the composite were examined. The results indicate that adding a small amount of CNTs can improve comprehensive property of the composites, especially mechanical property. However, excessive CNT, which is easily winding reunion and grain boundary segregation, results in performances degradation.  相似文献   

18.
FexCoyNi100−xy alloy nanoparticles with controllable compositions attached on the surface of carbon nanotubes (CNTs) were synthesized using an easy two-step route including adsorption and reduction processes. The nanocomposites have been characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), energy-disperse X-ray spectroscopy (EDS) and vibrating sample magnetometer (VSM). The effect of the alloy composition on microstructure and magnetic properties of ternary FeCoNi alloys attached on carbon nanotubes have been studied. During the nominal composition range (x = 21, 24, 33, 37, 46 and y = 60, 46, 48, 48, 35), FexCoyNi100−xy alloy nanoparticles attached on CNTs are quasi-spherical, fcc–bcc dual phase, and the coercivity (Hc) and saturation magnetization (Ms) vary with the alloy composition. The Hc of FexCoyNi100−xy alloy nanoparticles attached on CNTs decreases and Ms increases with increasing Fe content. These demonstrate that the two-step route is promising for fabricating alloy nanoparticles attached on CNTs for magnetic storage and ultra high-density magnetic recording applications.  相似文献   

19.
通过在金属铜箔上均匀排布碳纳米管宏观膜(carbon nanotubes (CNTs) macro film,CMF),制成复合集流体(Cu-CMF),从而改善活性物质与集流体的结合性,降低电池界面电阻,在活性材料石墨中掺杂还原氧化石墨烯(r GO),增大了活性物质石墨颗粒间的接触位点,最后获得高比容量和化学稳定性的电池。采用扫描电子显微镜和电化学测试对复合集流体的微观形貌及电化学性能等进行表征。结果表明,基于Cu-CMF复合集流体掺杂r GO的石墨电极,在2 C倍率下发挥101.5 m Ah·g-1的比容量,是未掺杂基于铜箔集流体的石墨电极(26.3 m Ah·g-1)的3.7倍以上,表现出优异的倍率性能。  相似文献   

20.
We here report the structural and optical studies of Zn1−xyBexMgyO (0 ≤ x ≤ 0.15; 0 ≤ y ≤ 0.20) powders and thin films. From the Rietveld refinement of the powder X-ray diffraction (XRD) patterns it was revealed that the value of ‘a’ lattice parameter remains almost unchanged whereas ‘c’ parameter reduces with Be and Mg co-doping in ZnO. The Zn-O bond length also decreases in co-doped samples. Raman studies of the pure ZnO powder showed all the characteristic peaks of the wurtzite hexagonal structure and with (Be, Mg) co-doping new modes appeared which can be attributed to arise as a result of substitution. The XRD of the films prepared from the powders using pulsed laser deposition (PLD) technique exhibited the preferential orientation and with increase in co-doping the (0 0 0 2) peak also shifts to higher 2θ values suggesting the incorporation of Be/Mg at the Zn-site. From the UV-visible optical transmittance measurement it was noticed that the band gap of the pristine ZnO film is 3.3 eV which enhanced up to 4.51 eV for Zn0.7Be0.1Mg0.2O film which lies in the solar blind region and is very useful in the realization of deep UV detectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号