首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The system HfO2-TiO2 was studied in the 0 to 50 mol% TiO2 region using X-ray diffraction and thermal analysis. The monoclinic ( M ) ⇌ tetragonal ( T ) phase transition of HfO2 was found at 1750°± 20°C. The definite compound HfTiO4 melts incongruently at 1980°± 10°C, 53 mol% TiO2. A metatectic at 2300°± 20°C, 35 mol% TiO2 was observed. The eutectoid decomposition of HfO2,ss) ( T ) → HfO2,ss ( M ) + HfTiO34,ssss occurred at 1570°± 20°C and 22.5 mol% TiO2. The maximum solubility of TiO2 in HfO2,ss,( M ) is 10 mol% at 1570°± 20°C and in HfO2,ss ( T ) is 30 mol% at 1980°± 10°C. On the HfO2-rich side and in the 10 to 30 mol% TiO2 range a second monoclinic phase M of HfO2( M ) type was observed for samples cooled after a melting or an annealing above 1600°C. The phase relations of the complete phase diagram are given, using the data of Schevchenko et al. for the 50% to 100% TiO2 region, which are based on thermal analysis techniques.  相似文献   

2.
Using X-ray diffraction techniques, thermal expansion and compressibility were measured on the orthorhombic compounds HfTiO4, Hf1.26Ti0.74O4, and ZrTiO4 (both quenched and cooled slowly from 1300°C). The thermal expansion of HfTiO4 is highly anisotropic; the thermal expansion coefficients along the crystallographic axes are α a =+(8.7±0.5)×10−6°C−1, α b =−(5.2±0.5)×10−6°C−1, and α c =+ (5.3±0.5)×10−6°C−1. The thermal expansion of Hf1.26Ti0.74O4 was similar to that of HfTiO4 but that of ZrTiO4 was markedly less anisotropic. The compressibilities of HfTiO4 and ZrTiO4 also differed markedly. All compounds investigated, however, behaved similarly in exhibiting a polymorphic transition to a high-pressure phase having the monoclinic baddeleyite (ZrO2) structure. The polymorphism can be explained qualitatively on the basis of crystal structure.  相似文献   

3.
Fine hafnium diboride (HfB2) powders have been prepared by modified carbothermal/borothermal reduction of hafnium dioxide (HfO2) at relatively low temperatures (1500°–1600°C) for 1–2 h. The XRD patterns could be indexed as hexagonal HfB2 and no evidence of HfC, HfO2, or other impurities was observed. Glow discharge mass spectrometer analysis indicates that the synthesized HfB2 powders had high purity. The synthesized HfB2 powders had small average crystallite size (around 1 μm) and low oxygen content (<0.30 wt%). Scanning electron microscopy observation of the as-prepared powders demonstrated quasi-column morphology and laser particle size analysis showed monodispersity (polydispersity 0.005).  相似文献   

4.
An all-alkoxide route to films and nano-phase powders of the La0.5Sr0.5CoO3 perovskite is described. To our knowledge, this is the first purely alkoxide-based route to (La1− x Sr x )CoO3, and it yields phase-pure and elementally homogeneous perovskite at 700°C by heating at 2°C/min. At 700°C, a cubic unit cell was obtained with a c=3.853Å, and after further heating to 1000°C, a rhombohedral cell could be indexed: a r=5.417 Å, αr=59.94°. Ninety to 130 nm thick films of La0.5Sr0.5CoO3 were obtained by spin coating. The gel-to-oxide conversion was studied in some detail, using thermo-gravimetric analysis, differential scanning calorimetry, powder X-ray diffraction, IR spectroscopy, and transmission electron microscope equipped with an energy-dispersive X-ray spectrometer.  相似文献   

5.
Preparation of phase-pure PZT (Pb(Zr0.52Ti0.48)O3) powders was achieved, in the presence of urea (CH4N2O), by homogeneous precipitation. Aqueous solutions of PbCl2, ZrOCl2·8H2O, and TiCl4 were used as the starting materials in the synthesis of phase-pure PZT powders. Phase evolution behavior of precursor powders was studied by powder X-ray diffraction (XRD) in air, over the temperature range of 90° to 750°C. The morphology of the formed powders was studied by scanning electron microscopy (SEM). Semiquantitative chemical analyses of the samples were performed by energy-dispersive X-ray spectroscopy (EDXS).  相似文献   

6.
Nanocrystalline α-Si3N4 powders have been prepared with a yield of 93% by the reaction of Mg2Si with NH4Cl in the temperature range of 450° to 600°C in an autoclave. X-ray diffraction patterns of the products can be indexed as the α-Si3N4 with the lattice constants a = 7.770 and c = 5.627 Å. X-ray photoelectron spectroscopy analysis indicates that the composition of the α-Si3N4 samples has a Si:N ratio of 0.756. Transmission electron microscopy images show that the α-Si3N4 crystallites prepared at 450°, 500°, and 550°C are particles of about 20, 40, and 70 nm in average, respectively.  相似文献   

7.
SrBi4Ti4O15(SBTi) powders were synthesized by a novel hybrid method of sol–gel and ultrasonic atomization. TiO2 particle was used as a starting material to replace other expensive soluble titanium salts. X-ray diffraction results showed that the pure-phase SBTi powders were obtained at 700°C for 2 h, which is much lower than the calcination temperature (800°–850°C) required in solid-state reactions. The ceramics sintered at 1100°C for 1 h exhibited 94.5% of relative density and a piezoelectric coefficient of 21 pC/N. The results showed that this hybrid method could lead to an attractive method for the industrial fabrication of SBTi materials.  相似文献   

8.
Axial and dilatometric thermal expansions and phase transformations were studied for solid solutions having the α-PbO2 structure in the ZrTiO4—In2O3—M2O5 (M = Sb, Ta) system with nominal formulas of Zr x Ti y In z Sb z O4 and Zr x Ti y In z Ta z O4 where x + y + 2 z = 2. With increased substitution of z , the cell volume increased, the difference in the b parameters at room temperature between those quenched from 1400° and 1000°C decreased, and the thermal expansion decreased. The axial thermal expansion of ZrTi y In z · Ta z O4 with z = 0.3 was almost identical with that of HfTiO4, and those with z = 0.4 and z = 0.45 were smaller than that of HfTiO4. Unit-cell volumes of these compound were compared with those of single oxides to make it clear that the unit-cell volume of ZrTiO4 was small anomalously and to distinguish the normal and abnormal substitution systems. These results were explained by the working hypothesis proposed for these compounds.  相似文献   

9.
Yttrium orthovanadate (YVO4) nanoparticles with nearly spherical shape were successfully synthesized via a molten salt method at a low temperature of 200°C. The as-prepared powders were characterized by X-ray diffraction, transmission electron microscopy and UV-Vis spectroscopy, respectively. The results show that increasing salt amount and/or elevating calcining temperature can greatly promote the crystallization and growth of YVO4 phase. UV-Vis absorption spectra suggested that YVO4 nanoparticles with the smaller particle size have the stronger UV absorption, and the sequent photocatalytic degradation data also confirmed their higher photocatalytic activity.  相似文献   

10.
Nanoparticles of strontium titanates (SrTiO3, Sr2TiO4) and lead titanate (PbTiO3) have been obtained using reverse micelles as nanoreactors. Powder X-ray diffraction studies of the powders after calcining at 800°C show monophasic SrTiO3, Sr2TiO4, and PbTiO3. X-ray line broadening studies and transmission electron microscopic studies show spherical grains of 30–40 nm size for strontium titanates, while PbTiO3 is obtained in the form of nanorods. The dielectric constant of SrTiO3 and Sr2TiO4 is found to be 90 and 30, respectively, (at 100 kHz) for samples sintered at 1000°C. PbTiO3 shows a dielectric constant of 160 (at 100 kHz) after sintering at 900°C. The dielectric constant of Sr2TiO4 (with temperature) is highly stable. The temperature variation studies of the dielectric constant of PbTiO3 show a ferroelectric phase transition at 490°C (1 kHz). The T c varies with frequency and is found to decrease to 470°C at 100 kHz.  相似文献   

11.
The ZnS-Ga2S3 equilibrium phase diagram has been determined to 50 mol% over the temperature range 700° to 900°C. Samples of various compositions were prepared via solid-state diffusion starting from powders of the pure components. The identification of the phases was determined by X-ray diffraction methods. The principal feature of the phase equilibria is the eutectoid transformation at 818 ± 5°C of hexagonal wurtzite containing 16 ± 1 mol% Ga2S3 to cubic ZnS and tetragonal ZnGa2S4. ZnGa2S4 is the equilibrium compound at 50 mol% GazS3, but it exists over a considerable range of stoichiometry. The solubility of Ga2S3 in ZnS increases with increasing temperature to a maximum of 9 ± 1 mol% at the eutectoid temperature.  相似文献   

12.
ZrO2–Al2O3 nanocrystalline powders have been synthesized by oxidizing ternary Zr2Al3C4 powders. The simultaneous oxidation of Al and Zr in Zr2Al3C4 results in homogeneous mixture of ZrO2 and Al2O3 at nanoscale. Bulk nano- and submicro-composites were prepared by hot-pressing as-oxidized powders at 1100°–1500°C. The composition and microstructure evolution during sintering was investigated by XRD, Raman spectroscopy, SEM, and TEM. The crystallite size of ZrO2 in the composites increased from 7.5 nm for as-oxidized powders to about 0.5 μm at 1500°C, while the tetragonal polymorph gradually converted to monolithic one with increasing crystallite size. The Al2O3 in the composites transformed from an amorphous phase in as oxidized powders to θ phase at 1100°C and α phase at higher temperatures. The hardness of the composite increased from 2.0 GPa at 1100°C to 13.5 GPa at 1400°C due to the increase of density.  相似文献   

13.
Thermal decomposition of silicon diimide, Si(NH)2, in vacuum resulted in very-high-purity, fine-particle-size, amorphous Si3N4 powders. The amorphous powder was isothermally aged at 50° to 100° intervals from 1000° to 1500°C for phase identification. Examination of ir spectra and X-ray diffraction patterns indicated a slow and gradual transition from an amorphous material to a crystalline α-phase occurring at 1200°C for >4 h and/or 1300° to 1400°C for 2 h. As the temperature was increased to ≥1450°C for 2 h, the crystalline β-phase was observed. Phase nucleation and crystallite morphology in this system were studied by electron microscopy and electron diffraction combined with TG as functions of temperature for the inorganic polymer starting materials. Powders prepared in this manner with 4 wt% Mg3N2 added as a sintering aid were hot-pressed to high-density fine-grained bodies with uniform microstructures. The optimum hot-pressing condition was 1650°C for 1 h. Silicon concentration steadily increased as the hot-pressing temperature or time was increased. A method for chemical etching for high-density fine-grained Si3N4 is described. Electrical measurements between room temperature and ∼500°C indicated dielectric constant and tan δ values of 8.3±0.03 and 0.65±0.05×10−2, respectively.  相似文献   

14.
Magnesium aluminate (MgAl2O4) spinel powders of irregular and spherical morphologies were obtained from the bi-component water-based sols following the sol–gel and sol–emulsion–gel methods, respectively. For the synthesis of the oxide microspheres, the surfactant concentration and viscosity of the sols were found to affect the characteristics of the derived microspheres. The gel and calcined powders were investigated by using thermogravimetry analysis, differential thermal analysis, X-ray diffraction (XRD), optical and scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy, and particle size analysis. XRD results indicated crystallization of the only phase MgAl2O4 spinel from 200° to 1000°C. Formation of hollow microspheres with a single cavity was identified by SEM.  相似文献   

15.
The present investigation reports on a simple technique for the preparation of single-phase MnFe2O4 nanocrystalline powders using the polymerized complex method, starting from manganese carbonate and iron nitrate. A mixed aqueous solution with citric acid, ethylene glycol, Fe, and Mn ions was polymerized. The phases formation, the homogeneity, and the structure of the obtained powders have been investigated by thermogravimetry, X-ray diffraction (XRD), scanning and transmission electron microscopy, and Mössbauer spectroscopy measurements. The magnetic hysteresis loop behavior was measured at 5 K in a vibrating sample magnetometer. XRD results demonstrated that thermally induced crystallization of cubic MnFe2O4 from the Mn–Fe polymeric precursor occurred at temperatures as low as 400°C. Pure single-phase MnFe2O4 nanocrystallites without any impurity or amorphous phases were obtained when the precursor was treated at 600°C for 1 h.  相似文献   

16.
Nano-sized TiO2 powders were prepared by controlled hydrolysis of TiCl4 and Ti(O-i-C3H7)4 solutions and nitrided in flowing NH3 gas at 700°–1000°C to form TiN. Nano-sized TiN was densified by spark plasma sintering at 1300°–1600°C to produce TiN ceramics with a relative density of 98% at 1600°C. The microstructure of the etched ceramic surface was observed by SEM, which revealed the formation of uniformly sized 1–2 μm grains in the TiCl4-derived product and 10–20 μm in the Ti(O-i-C3H7)4-derived TiN. The electric resisitivity and Vickers micro-hardness of the TiN ceramics was also measured.  相似文献   

17.
The sonochemical preparation of PbTiO3 fine powders with lead acetate trihydrate and tetrabutyl titanate as precursors is reported in this paper. Narrow size distribution (40–60 nm) of gel-derived PbTiO3 nanocrystallites at 520°C was revealed by transmission electron microscopy. The preparation processings with ultrasonic irradiation and a control test without ultrasonic irradiation for comparison were investigated. Results of phase evolution, microstructure, and thermal analysis of gels were characterized and discussed between the control test and the ultrasonic preparations. Acoustic cavitation exerted an important influence on nucleation, gelation, and homogenization of as-prepared gel, which contributed to the evolution of the resulting gel on further heat treatment. The sonochemical gel was detected to crystallize at temperature, as low as about 410°C, which was confirmed by X-ray powder diffraction and thermogravimetric analysis and differential thermal analysis (TGA–DTA).  相似文献   

18.
Preparation of Strontium Ferrite Particles by Spray Pyrolysis   总被引:4,自引:0,他引:4  
Crystalline, submicrometer strontium ferrite powders, including SrFeO2.97, SrFe2O4, Sr2FeO4, Sr3Fe2O6.16, and SrFe12O19, were prepared by spray pyrolysis of an aqueous solution of mixed metal nitrates. The Sr:Fe mole ratio in the precursor solution was retained in the final products. Phase-pure materials were typically obtained only at the highest temperatures investigated (>1100°C) and powders prepared at lower temperatures frequently contained crystalline Fe2O3. The as-prepared particles were unagglomerated, polycrystalline, and hollow at lower temperatures, but densified in the gas phase at higher temperatures to give solid particles. The strontium ferrite (SrFe12O19) system was studied in detail as a representative example of the Sr-Fe-O system. At temperatures of 1200°C, dense, phase-pure magnetoplumbite-structure material, SrFe12O19, was obtained, while at lower temperatures, small amounts of Fe2O3 were observed. The particles prepared at 800° and 1100°C were 0.1-1.0 μm in diameter, and consisted of crystallites <100 nm, and were nearly solid. The difficulty in forming phase-pure SrFe12O19 was the different thermal decomposition temperatures of Sr(NO3)2 (725°C) and Fe(NO3)39H2O (125°C) as demonstrated by thermogravimetric analysis in the SrFe12O19 system.  相似文献   

19.
Foam evolution during dissolution of MnO-Mn3O4 pellets and powders in borosilicate glass was recorded photographically. The pellets were placed horizontally in transparent crucibles, covered with molten glass, and held at 1150°C. If the Mn3O4 content in pellets was more than 31 wt%, they developed foam after an initial foamless period. The length of the foamless period decreased and the duration of foaming increased as the Mn3O4 content increased. Batches prepared from MnO-Mn3O4 powders and frit, and soaked at 1150°C, foamed without an initial foamless period. The foam developed and collapsed before the set temperature was established within the melt and rose to a higher level than foam produced by pellets. Thermogravimetry of batches heated in 1 atm (∼105 Pa) of O2 shows oxidation at 400° to 600°C followed by mass loss due to volatilization and oxygen evolution.  相似文献   

20.
In this study, we report on the synthesis of nanopowders of ferroelectric Bi3.5Nd0.5Ti3O12 ceramic at temperatures below 500°C via a simple chemical method using citric acid as a solvent. The calcined powders were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). Heating the as-dried powders in air first leads to crystallization of the Bi2Ti2O7 phase at ∼310°C, followed by crystallization of the perovskite Nd-doped Bi4Ti3O12 phase at ∼490°C as suggested by the peaks in the DSC analysis and confirmed by the evolution of phases in XRD patterns of the powders calcined at various temperatures. TEM of particles calcined at 550°C for 1 h in air showed an average particle size of 50–60 nm. The temperature dependence of capacitance of nanopowders calcined at 700°C for 1 h in air showed a Curie temperature of ∼615°C evincing a ferroelectric transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号