首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The agronomic potential of four partially acidulated rock phosphates (PARP) made from a moderate reactive phosphate rock at 30 or 60 percent acidulation either by sulfuric acid alone or by combination of sulfuric and phosphoric acids was compared with that of monocalcium phosphate (MCP) and ground rock phosphate (RP) on a calcareous soil (Typic Hapluquent, pH 8.5) in greenhouse. Dry weight and P accumulation of successive cuttings of ryegrass shoots were used to evaluate the relative agronomic potential of these fertilizers. Results indicated that PARPs of higher water-soluble P content had similar immediate effectiveness as MCP at two earlier cuttings, however, they produced significantly less total dry matter than MCP did in overall six successive cuttings. PARPs were constantly inferior to MCP in terms of P uptake by plant in all the six cuttings. When compared to RP, on the other hand, PARPs had markedly higher relative effectiveness. RP itself affected neither the dry matter production nor the P uptake by plant as compared to control treatment.Fractionation of residual inorganic P in the soil samples at two time intervals during plant growth indicated that MCP-P mainly transformed to dicalcium phosphate and octacalcium phosphate, and to a less extent to Fe and Al associated P. These forms of P had significant correlation with P accumulation by plant. Raw RP did not subject to transformation after applied to the soil regardless the duration of culture time. No obvious dissolution of unreacted RP in PARP materials was detected. Plant dry matter production and P uptake were mainly correlated with water-soluble P added with the fertilizers. It is suggested from the experiment that although partial acidulation could substantially improved the effectiveness of rock phosphate and the immediate effect of the fertilizer was competitive with MCP, application of PARP to calcareous soils is only of short-term benefits; in a long run this fertilizer is not considered as a desirable source of P in calcareous soils since the unacidulated part in the fertilizer was unable to be solubilized in the alkaline conditions.  相似文献   

2.
Partially acidulated phosphate rocks were prepared from unground North Carolina phsophate rock and H3PO4 by (i) mixing phosphate rock with the requisite amount of H3PO4, (ii) mixing with a portion of the acid followed by adding the remaining acid during granulation and (iii) single-step acidulation and granulation. The degrees of acidulation were 20, 30, 40 and 50%. Only 20% and 30% acidulations were done by method (iii). The phosphate rock granulated readily on addition of H3PO4 either as in method (ii) or (iii) and the products did not need external drying before storage. The citric and water soluble P showed that from the viewpoint of acid-phosphate rock interaction all three methods of preparation were satisfactory. The granules were equally strong as or stronger than commercially available single or triple superphosphate samples tested. The percent degradation on abrasion was less than 4% compared to about 8% for superphosphate and 0.4% for triple superphosphate. A sand incubation study suggested an interaction in the partially acidulated phosphate rock between the monocalcium phosphate component and unreacted phosphate rock which initially increased the solubility of P.  相似文献   

3.
The initial and residual fertilizer effectiveness of North Carolina RP (rock phosphate), monocalcium phosphate and partially acidulated RP (made from North Carolina RP at 30% acidulation), both granulated and non-granulated, were measured in a glasshouse experiment. Triticale (xTriticosecale) was grown for 30 days on a soil that had been adjusted to three pH values (4.2, 5.2 and 6.2). Two crops were grown with a six month interval between crops. The effectiveness of the different fertilizers was compared using relationships between (1) yield of dried tops and the amount of P applied and (2) P content (P concentration in tissue multiplied by yield) and the amount of P applied. For the first crop, relative effectiveness (RE) of the fertilizers was calculated relative to granulated monocalcium phosphate, the most effective fertilizer. Monocalcium phosphate was not applied to the second crop, so relative residual effectiveness (RRE) was estimated for each fertilizer relative to the residual effectiveness of granulated monocalcium phosphate.The relative effectiveness of granulated monocalcium phosphate (band application) was greater (RE = 1.00) than of North Carolina RP (0.01–0.02) and partially acidulated RP (0.45–0.76) for all three soil pH values for the first crop. Granulation and band application increased the effectiveness of monocalcium phosphate and partially acidulated RP, but reduced the effectiveness of North Carolina RP. Both non-granulated monocalcium phosphate and partially acidulated RP were less effective than granulated partially acidulated RP for both crops. For the second crop granulated monocalcium phosphate was most effective and the RRE of non-granulated partially acidulated RP (0.16–0.32) and North Carolina RP (0.19–0.28) was greater than for non-granulated monocalcium phosphate (0.12). For the more acidic soil the RE of non-granulated North Carolina RP was four times higher than for the high pH soil for the first crop and 60% higher for the second crop, but it was still poorly effective relative to granulated monocalcium phosphate. Granulated North Carolina RP was least effective among all the fertilizers for all soil pH values and for both crops.  相似文献   

4.
The standard solubility tests as used in New Zealand for assessing single superphosphate have been applied to alternative high analysis fertilisers such as triple superphosphate and partially acidulated phosphate rocks using phosphoric acid. Under differing experimental conditions it has been established that the phosphate rock component has a variable solubility in 2% citric acid at all levels, and in neutral ammonium citrate at high levels of PR content, making comparisons between percentages of soluble P derived from different fertilisers inappropriate for chemical or agronomic assessment. Only water, which extracts all the monocalcium phosphate component but none of the phosphate rock, can be used to compare the efficiency of the acidulation process, and neutral ammonium citrate can be used to assess the amount of phosphate rock remaining when the acidulation level is in excess of 50%. 2% formic acid produced almost identical results to 2% citric acid for partially acidulated materials and therefore cannot be recommended as an alternative, improved extractant for fertilisers containing large proportions of residual phosphate rock.  相似文献   

5.
The agronomic effectiveness of unground North Carolina phosphate rock (PR) and partially acidulated phosphate rocks (PAPR) prepared by acidulation of the PR with 30%, 40% and 50% of the phosphoric acid needed for complete acidulation, was determined in a 4 year field experiment on permanent pastures. The soil developed from volcanic ash, and was highly P retentive. The rate of dissolution in soil of the PR component in PAPR and of PR applied directly was measured, together with bicarbonate extractable P. The priming effect of the monocalcium phosphate (MCP) component of PAPR on root growth was also investigated.Pasture yields showed that even the 30% acidulated PAPR was as effective as fully acidulated triple superphosphate (TSP), mainly due to the high reactivity of the PR used. The 50% acidulated PAPR tended to be superior to TSP. Soluble P in PAPR caused a marked increase in root proliferation, and dry matter yields were greater than predicted from the amounts of MCP and PR in PAPR. Directly applied PR was inferior to TSP in years 1 and 2 but was equal in year 4. (There was no pasture response to application of P fertilizers in year 3.)Dissolution rates of the PRs were determined applying a cubic model to PR dissolution data. The rate of dissolution increased with increasing acidulation and this is tentatively ascribed to increased root proliferation around PAPR granules and acidification of the clover rhizosphere during nitrogen fixation.  相似文献   

6.
Ecophos is a possible alternative phosphorus (P) fertilizer to single and coastal superphosphate for clover pasture (Trifolium subterraneum) on P leaching, sandy, humic podzols in the > 800 mm annual average rainfall areas of south-western Australia. Ecophos and coastal superphosphate are partially acidulated rock phosphates (PARP) fertilizers. Ecophos is made from calcium iron aluminium (crandallite millisite) rock phosphate. Coastal superphosphate is made from apatite. The sandy humic podzols are known to promote extensive dissolution of rock phosphates, including the untreated rock phosphate present in PARP fertilizers. In this field study (early April 1992 to end of October 1994), the effectiveness of the PARP fertilizers was calculated relative to the effectiveness of single superphosphate (relative effectiveness or RE), using yield and P content of dry clover herbage. The RE of the PARP fertilizers varied markedly between assessments, both within and between years, from being much less effective than single superphosphate, to equally or much more efective. This great diversity in RE is attributed to the different extents P can be leached in the soil, depending on seasonal conditions. It is concluded that Ecophos is a suitable alternative P fertilizer for the soil and environment studied.  相似文献   

7.
Two long-term (11 and 12 y) field experiments in south-western Australia are described that measured the relative effectiveness of three rock phosphate fertilizers (C-grade ore, Calciphos and Queensland (Duchess) rock phosphate), single, double and triple superphosphate. The experiments were on established subterranean clover (Trifolium subterraneum) — based pasture that had received large, yearly, applications of single superphosphate for many years before the experiments began so that in the first year the nil phosphorus (P) treatment produced 80 to 90% of the maximum yield. The experiments were conducted using a rotation of one year cereal crop (oats,Avena sativa at one site, and barley,Hordeum vulgare, at the other): 2 y pasture, a typical rotation on farms in the region. Five levels of each P fertilizer were applied every third year with the crop. Grain yield of cereals, P content of grain, pasture yield, and bicarbonate-soluble P extracted from the soil (available P) were used to estimate fertilizer effectiveness values.The three superphosphate fertilizers had identical values of fertilizer effectiveness. Superphosphate was always the most effective fertilizer for producing grain. The rock phosphate fertilizers were one-seventh to one-half as effective per kg P as superphosphate when assessed on the yield or P content (P concentration × yield) of grain within each cropping year. Bicarbonate-extractable soil P values demonstrated that superphosphate was two to fifteen times as effective as the rock phosphate fertilizers. The relationship between grain yield and P content in grain (i.e. the internal efficiency of P use curve) was similar for the different P fertilizers. Thus for all P fertilizers yield was not limited by other factors as it varied solely in response to the P content, which in turn presumably depended on the P supply from the fertilizers.The relative agronomic effectiveness of rock phosphates is greater for marginally P deficient soils than for highly P deficient soils but rock phosphate remains less effective than superphosphate. We conclude that the rock phosphates studied should not be substituted for superphosphate as maintenance fertilizers for soils in Western Australia that are marginally deficient in P. This result is consistent with the results of many field experiments on highly P deficient soils in south-western Australia. These have shown that a wide variety of rock phosphate fertilizers are much less effective than superphosphate in both the short and long term.  相似文献   

8.
The literature comparing the efficiency of partially acidulated phosphate rock fertilisers with that of a single or triple superphosphate is briefly summarised and found to be conflicting. Various theories purported to explain why partially acidulated phosphate rock products are as efficient are examined. An alternative hypothesis, which appears to reconcile the conflicting evidence, is presented. This depends in part on the dissolution of the phosphate rock component of a partially acidulated product in the soil; the factors influencing the dissolution of phosphate rock in the soil are reviewed in relation to the conflicting statements about the efficiency of partially acidulated phosphate rock products.  相似文献   

9.
The agronomic effectiveness of two partially acidulated rock phosphate (PARP) fertilizers, made from either North Carolina or Moroccan apatite rock phosphate, and a fused calcium-magnesium phosphate (thermal phosphate or TP), was compared with the effectiveness of superphosphate in two glasshouse experiments. A different lateritic soil from Western Australia was used for each experiment. Oats (Avena sativa) were grown in one experiment and triticale (×Triticosecale) in the other. Fertilizer effectiveness was measured using (i) yield of dried tops, (ii) P content (P concentration in tissue multiplied by yield) of dried tops, and (iii) bicarbonate-extractable soil P (soil test value).The following relationships differed for the different fertilizers: (i) yield of dried tops and P content in the dried tops; (ii) yield and soil test values. Consequently the fertilizer effectiveness values calculated using yield data differed from those calculated using P content or soil test data. Freshly-applied superphosphate was always the most effective fertilizer regardless of the method used to calculate fertilizer effectiveness values. For one of the soils, as calculated using yield data, relative to freshly-applied superphosphate, the PARP and TP fertilizers were 15 to 30% as effective for the first crop, and 20 to 50% as effective for the second crop. The second soil was more acidic, and for the first crop the PARP and TP fertilizers were 80 to 90% as effective as freshly-applied superphosphate, but all fertilizers were only 5 to 15% as effective for the second crop. For each soil, the two PARP fertilizers had similar fertilizer effectiveness values. Generally the TP fertilizer was more effective than the PARP fertilizers.  相似文献   

10.
Phosphate rocks partially acidulated either with H3PO4 or H2SO4 were compared against SSP or TSP as phosphate fertilizers for permanent pasture. Eleven field trials were conducted over periods of up to 6 yrs. Fertilizers were surface applied annually. Initial soil pHw values ranged from 5.5–6.3 and Soil P retention from 25% to 97%. The PRs used for partial acidulation were unground or ground North Carolina PR, ground Khouribga PR, and a blend of ground PRs of North Carolina, Arad and Khouribga PRs. From the DM yields, fertilizer substitution values were calculated: fertilizer substitution value was the ratio of total P applied as superphosphate to total P as PAPR required to produce the same DM yield.Rates of dissolution of the PR component of PAPRs were also determined in soils collected from two trials.Agronomic results demonstrated that 30% acidulated phosphoric PAPRs (about 50% of total P as water-soluble P) were as effective as TSP, when the PR acidulated was from unground North Carolina PR. Results from one field trial indicated that when PAPR was from ground North Carolina PR, 20% acidulated product (water-soluble P 30–40% of total P) was equally effective as TSP. Replacement of ground North Carolina PR by a less reactive Khouribga PR did not appear to decrease the yield. Results indicated that per unit P released into soil solution, PAPRs were more efficient fertilizers than TSP. With annual applications, fertilizer substitution value of PAPR 30% tended to increase with time.Sulphuric PAPRs prepared from North Carolina PR were generally inferior to phosphoric PAPRs containing similar amounts of water-soluble P. This was attributed to the presence of CaSO4 coatings.Abbreviations DM Dry matter - PAPR Partially acidulated phosphate rock - PR Phosphate rock - SSP Single superphosphate - TSP Triple superphosphate  相似文献   

11.
A procedure for representing the effectiveness of fertilizers relative to a standard fertilizer by the estimation of substitution rates is demonstrated with yield data from a fertilizer experiment with triple superphosphate and a partially acidulated rock phosphate. The substitution rate is estimated by an iterative regression procedure and the accuracy of the estimate indicated by a 5% confidence interval.The use of substitution rates to evaluate fertilizers depends on the assumption that the standard and alternative fertilizers differ in their effects on crop growth only because of differences in content of available nutrient. This assumption is tested as a statistical hypothesis.Substitution rates calculated from experimental data with rates of application of the fertilizers represented in terms of chemical analysis of the fertilizers, indicate the usefulness of the analyses as measures of the available nutrient content of the fertilizers.  相似文献   

12.
Khouribga phosphate rock was partially acidulated with 50 and 70% of the required H2SO4 for complete acidulation. The unreacted rock residue was isolated by subsequent extractions with water and alkaline ammonium citrate solution. P solubility in 2% formic acid of this residues was reduced as compared to the original Khouribga phosphate rock. This loss in reactivity consistently increased with the degree of acidulation. Plant response to fertilizer application emphasized the negative effect of partial acidulation in an acid soil. Mixtures of superphosphate and phosphate rock were more effective than partially acidulated phosphate rock.Applications of apatitic P did not affect P efficiency on a neutral soil. Differences between mixed and partially acidulated phosphate rock could therefore not be observed. The effectiveness of the products was due to their content of acidulated P.Hydrolysis of monocalciumphosphate caused a further acidulation of the residual apatite in moist incubated granules. The extent of these reactions, however, was too low to improve P efficiency significantly.  相似文献   

13.
Six different preparations of elemental sulfur incorporated into triple superphosphate and a single mixture of elemental sulfur with partially acidulated reactive phosphate rock were evaluated for the rate of release of sulfatesulfur to pasture at two sites.The method of preparing the mixtures affected the size of sulfur particles released on dispersion of fertilizer granules. The rates of release of sulfate from oxidation of the elemental sulfur was controlled by the fineness of the particles of elemental sulfur. For rapid release of sulfate by oxidation a mixture prepared by sintering elemental sulfur with mature triple superphosphate was the most effective. It contained sulfur particles of diameter less than 75 m. The mixtures which comprised synthetic blends of elemental sulfur of particle size less than 150 m or 150–250 m, each with mature triple superphosphate, released sulfate at a progressively slower rate than that with particles less than 75 m. However, both proved effective sulfur fertilizers releasing sulfate over a 1–2 year period. In contrast, mixtures prepared by adding molten elemental sulfur during the process of manufacturing triple superphosphate resulted in a coarser distribution of sulfur particles and a slow release of sulfate to plants.The incorporation of sulfur into a mixture with partially acidulated reactive phosphate rock was made via the dispersion of molten sulfur into phosphoric acid which was then used to partially acidulate phosphate rock. The resultant sulfur particles ranged from finely divided (e.g. 38% < 150 m) to moderately fine (81% < 500 m), and the release of sulfate was predictable based on the particle size distribution.Differences between the two experimental sites in uptake of plant sulphate reflected the different pastures grown. At the cool temperate coastal site a ryegrass/clover pasture rapidly took up sulfate as it was released into the topsoil. Inland, in the summer-dry environment, the uptake of released sulfate by the deep-rooted lucerne pasture was delayed for 12–18 months, indicating that the sulfate uptake increased after the nutrient had leached beyond the surface soil layer.  相似文献   

14.
Controlled-release phosphate fertilizers include phosphate rocks (PRs) for direct application, partially acidulated phosphate rocks (PAPRs) and thermal phosphates. Phosphate rocks contain apatite as the main P containing mineral, the composition and the chemical nature of which vary between PRs. Based on the solubility in chemical extractants PRs are broadly grouped into ‘reactive’ and ‘unreactive’. The ‘reactivity’ of PRs is influenced strongly by the extent of carbonate substitution for phosphate in the apatite minerals. Under certain soil and climatic conditions reactive PRs (RPRs) can be used as a source of P for direct application. Partially acidulated phosphate rocks (PAPRs) are produced either by direct partial acidulation of PRs with mineral acids or by mixing PRs with fully acidulated superphosphate reaction mixtures. Partial acidulation of PRs with H3PO4 generally results in higher water soluble P contents than those acidulated with H2SO4. Mixing of RPRs with superphosphate reaction mixtures sometimes results in the preferential consumption of free acid and thereby increases the amounts of residual unreacted PRs. Thermal phosphates are produced by either heating PRs below melting point both in the presence and the absence of silica (calcined phosphates) or heating PRs with silica above melting point (fused phosphate). These phosphates are alkaline in nature and hence suitable for acidic soils.  相似文献   

15.
Fertilizer use in Nigeria, though growing, is still very low especially if considered in relation to the growing food needs of the country. Efforts have been made through scientific investigations to find ways of increasing fertilizer use efficiency in the humid zone of the country. Investigations have been carried out mainly on nitrogen, phosphorus, potassium, mixed and compound fertilizers. The secondary nutrients sulphur, calcium and magnesium as well as the micronutrients have received comparatively little attention. In the Southeastern humid zone, a considerable effort has been made to solve the problem of soil acidity through liming. Interaction of the primary nutrients under field conditions has not been investigated sufficiently.Results of experiments carried out on comparisons of P sources, urea placement methods and interaction of N, P, K, S fertilizers in the Ultisols of Southeastern Nigeria show that single superphosphate was superior to Togo phosphate rock, partially acidulated Togo phosphate rock, and diammonium phosphate for the production of maize. Methods of application of urea did not significantly affect maize grain yield. There was no significant interaction of N, P, K, S in the Ultisol but S was limiting. An application of a minimum of 45 kg/N/ha appears to be threshold for positive response to P by maize stover. More effort is needed to understand nutrient interaction in the Ultisols which are dominant in the humid Southern zone of Nigeria.  相似文献   

16.
Coastal superphosphate, a partially acidulated rock phosphate (PARP), is being considered as an alternative fertilizer to single superphosphate for pastures in high rainfall (> 800 mm annual average) areas of south-western Australia. The effectiveness of single and coastal superphosphate, as P fertilizers, was measured in two field experiments using dry herbage yield of subterranean clover (Trifolium subterraneum). The experiments were started in April 1990 and were terminated at the end of 1993. In the years after P applications, soil samples were collected each January to measure Colwell soil-test P, which was related to plant yields measured later on that year, to provide soil P test calibrations.Relative to freshly-applied single superphosphate, the effectiveness of freshly-applied coastal superphosphate and the residues of previously-applied single and coastal superphosphate were less effective in some years (from 3% as effective to equally effective), and up to 100% more effective in other years. This large range in effectiveness values in different years is attributed to different climatic conditions. Soil P test calibrations were different for soils treated with single or coastal superphosphate. The calibrations were also different for different yield assessments (harvests) in the same year, and in different years. Consequently soil P testing can only provide a very crude estimate of the current P status of the soils.  相似文献   

17.
Four greenhouse experiments were conducted using three soils to determine the availability to plants of P from unground North Carolina phosphate rock (PR) treated with 20% to 50% of the H3PO4 required for complete acidulation. The influences of soil P retention, P status, the method of preparation of partially acidulated phosphate rocks (PAPRs) and the granule size of the products were investigated. Perennial ryegrass was grown as the test plant for up to 8 months. Triple superphosphate (TSP) was used as the standard fertilizer and unground North Carolina rock was included for comparison.The dry matter yield and P uptake response curves showed that in all experiments PAPRs were markedly superior to the PR. P status of soils appeared to influence the effectiveness of PAPRs to a greater extent than P retention. In soils of low P status the degree of acidulation required for PAPR to be nearly or as effective as TSP was 50% whereas in a soil of high P status even 30% PAPR applied as a maintenance fertilizer was effective. There was a significant positive correlation between water soluble P of fertilizers and P uptake by ryegrass. However, in general PAPRs were more effective per unit of water soluble P than TSP. Granule size (< 1 mm and 1–2 mm) and method of preparation of PAPRs did not alter the effectiveness of PAPRs.  相似文献   

18.
The 1990s mark the centenary of the earliest work to identify the value of rock phosphate fertilizers for Western Australian agriculture. This review summarizes this and subsequent work. We arrive at a simple conclusion: rock phosphates are ineffective fertilizers because they do not dissolve rapidly in Western Australian soils.The effectiveness of different types of rock phosphate fertilizers has been compared with the effectiveness of superphosphate in several long-term field experiments on a variety of non-leaching soils in south-western Australia. These experiments have consistently shown that, all types of rock phosphate fertilizers are between one twentieth to one third as effective as freshly applied superphosphate both in the year of application and in subsequent years. Glasshouse experiments produce similar results. Laboratory studies of soils from these experiments have shown that the poor effectiveness of the rock phosphates is primarily due to the small extent of dissolution of these fertilizers in Western Australian soils. Several factors are responsible for the inability of adequate amounts of rock phosphate to dissolve in these soils. The soils are only moderately acid (pH in water > 5.5) and generally have low pH buffering capacities so can not rapidly contribute a large supply of protons to promote extensive dissolution of rock phosphate. The soils also have low capacities to adsorb the P and Ca released during dissolution of rock phosphate. They also have low water-holding capacities, and in the field under the Mediterranean climate the soil near the surface rapidly dries between rains thereby restricting dissolution of rock phosphates. In the laboratory it has been shown that rock phosphate dissolution is considerably enhanced in permanently-moist, acid soil with high pH buffering capacity, and high P and Ca buffer capacities.Thus the low extent of dissolution of rock phosphate fertilizers in Western Australian soils is responsible for the poor agronomic effectiveness of these fertilizers measured in the field experiments.  相似文献   

19.
The concretionary soils of Northern Ghana, which are near neutral with respect to pH and which comprise mostly lateritic ferruginous nodules are known to sorb significant amounts of phosphate. Instead of imported superphosphate, the use of less expensive indigenous Togo rock phosphate (PR) or partially acidulated (50%) Togo rock phosphate (PAPR-50), are possible alternative phosphate fertilizer options for these soils. The objective of this research was to evaluate the effectiveness of freshly-applied SSP, PR and PAPR-50, and the effectiveness of the residues of these fertilizers in a glasshouse pot study. Laboratory studies were also undertaken to study the transformation of these fertilizers after their application to the concretionary ferruginous soils. In the greenhouse study, yield of dried tops and the P uptake by the tops of maize var. Dobidi (Zea mays) was used to measure fertilizer effectiveness. One level of P was applied for each fertilizer (26.4 kg P ha–1). Plants were grown for 28 days. After harvesting the first crop, subsequent cropping was carried out to evaluate the effects of the residual P in the pots. The results showed that increases in dry matter yield of shoot and total P uptake followed the trend SSP > PAPR-50 > PR > control. The relative agronomic effciency (RAE) of PAPR-50 was 58% that of commercial SSP in increasing growth of the crop, while that of PR was only 23%. The residual effect of either PAPR-50 or PR on dry matter yield and total P uptake was found to be negligible compared with SSP, suggesting that apatitic P was poorly effective relative to SSP in the used soils. The P fractionation results confirmed that PR and PAPR-50 did not significantly increase any of the P fractions in either the soil fines or nodules after the first crop. By contrast, application of SSP increased all extractable Pi fractions, most of the P added being recovered from the nodules in forms associated with Fe (hydroxide and residual Pi).It is concluded that, relative to SSP, the P from residues of PAPR-50 and PR are poorly effective in the soils studied for sustainable plant production.  相似文献   

20.
Partially acidulated phosphate fertilizers are manufactured either by direct partial acidulation of phosphate rocks (PRs) with sulphuric and/or phosphoric acid (directly acidulated PAPR) or indirectly by mixing reactive phosphate rocks (RPRs) with single superphosphate (SSP-RPR mixture). This form of low cost fertilizer manufacture is suitable for improving the agronomic value of unreactive PRs or production of high analysis fertilizers that can have agronomic values similar to fully acidulated phosphate fertilizers.The solubility characteristics of the directly acidulated PAPRs are affected by the type, composition and concentration of the acid used for acidulation, degree of acidulation, nature and fineness of PR and the method of manufacture. In general, partial acidulation with phosphoric acids which contain minimum amounts of metallic impurities acidulates more PR and results in more soluble P in the product. In the case of SSP-RPR mixtures made by adding RPR to immature SSP, the nature of PR used for SSP manufacture and the time of addition of RPR to ex-den SSP mixture affects the quality of the product. In order to minimize the selective reaction of the RPR with residual acid present in the ex-den SSP reaction mixture, RPR should not be added until PR acidulation (used for SSP) is essentially complete.The agronomic value of partially acidulated phosphate fertilizers is affected by the amount of water soluble P and the solubility of residual PR. None of the single extraction tests such as 2% citric acid, 2% formic acid and neutral ammonium citrate appear to be appropriate as indicators of plant available P in these fertilizers. Double extraction procedures which remove both the soluble P and the residual P have been investigated, but need to be correlated with agronomic data before they can be adopted as quality tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号