首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The surface roughness is a variable used to describe the quality of polished surface. This article presents a surface roughness model based on abrasive cutting and probability theory, which considers the effects of abrasive grain shape, grit and distribution feature, pressure on surface roughness. The abrasive grain protrusion heights are thought to close to Gaussian distribution, and then the relationship between the indentation depth and the pressure based on Hertz contact theory is obtained. Surface roughness prediction model is established by calculating indentation depth of the abrasive grains on workpiece surface. The maximum surface profile height (Ry) is approximately equal to the maximum indentation depth of the abrasive grain. The arithmetic average surface roughness (Ra) is equal to the average indentation depth of the abrasive grain. The effects of process parameters such as pressure and grit on Ry and Ra were simulated and analyzed in detail.  相似文献   

2.
With the advance of contemporary technology, high precision surface finishing techniques for optical glasses are of great concern and developing to meet the requirements of the effective industrialized processes. Not only the used tools but also process parameters have great influence on the surface roughness improvements. In this paper, surface roughness improvement of Zerodur optical glass using an innovative rotary abrasive fluid multi-jet polishing process has been presented. For the same purpose, a tool for executing ultra precision polishing was designed and manufactured. Taguchi's experimental approach, an L18 orthogonal array was employed to obtain the optimal process parameters. ANOVA analysis has also been carried out to determine the significant factors. It was observed that about a 98.33% improvement on surface roughness from (Ra) 0.360 μm to (Ra) 0.006 μm has been achieved. The experimental results show that a surface finished achieved can satisfy the requirements for optical-quality surface (Ra < 12 nm). In addition, the influence of significant factors on surface roughness improvement has been discussed in this study.  相似文献   

3.
无磨料低温抛光的工艺方法研究   总被引:3,自引:0,他引:3  
对无磨料低温抛光这种全新的工艺方法进行了系统的研究,包括抛光设备、抛光冰盘的制备、工件盘的制备、抛光盘的修整、抛光后工件的清洗、抛光后表面粗糙度的测量等。并用此种方法对石英晶体进行了抛光实验,得到了Ra0.53mm的超光滑表面,结果证明这是一种获得超光滑表面的新方法。  相似文献   

4.
This article reports a novel and efficient diamond particles abrasive with tunable viscoelasticity for sandblasting polishing. Controlling the rust inhibitor content can change its viscoelasticity to adhere diamond particles on polymer materials. Using the sandblasting mechanism, the abrasive deform and slide on the workpiece surface, so that the diamond particles can cut onto the surface peaks of the workpiece. Thus, the complicated morphology can be rapidly and precisely polished. The friction generated by the abrasive on the surface of the workpiece will cause the rust inhibitor solution to evaporate, resulting in reduced viscosity, which makes the diamond particles gradually fall off from the abrasive. Applying Taguchi method, the optimal parameters for viscosity and injection angle were identified. The surface roughness was found to decrease from Ra?=?1.47?μm to Ra?=?0.2?μm in 3?min. The two kinds of complex concave surfaces of different materials were polished by this innovative composite diamond particles abrasive with the optimal parameter values, which has been verified to have 40 times higher efficiency than the traditional manual polishing.  相似文献   

5.
研究了电流变抛光工艺参数对工件表面粗糙度的影响。用SiC和Al2O3磨料分别对硬质合金和光学玻璃进行了抛光试验,考察了抛光时间、工具电极转速、电源电压、磨料浓度等工艺参数影响工件表面粗糙度的规律。试验结果表明,随着抛光时间、工具电极转速、电源电压的增加,工件表面粗糙度逐渐降低。随着磨料浓度增加,工件表面粗糙度先降低后升高。对于表面粗糙度而言,磨料浓度存在一个最佳值。  相似文献   

6.
提出了一种墙面抛光机械手,它以机器的有序抛光代替人工的无序抛光,可大幅度提高效率,减轻人工劳动强度。  相似文献   

7.
针对燃料电池微通道反应器的沟槽底面抛光技术难题,开展磨料水射流沟槽抛光仿真与试验研究.采用FLUENT软件,对不同工艺参数下沟槽底部剪切力分布进行了数值模拟;根据仿真结果进行316L不锈钢材料的单沟槽抛光工艺试验,检测分析不同抛光参数下单沟槽底面形貌、材料去除率以及表面粗糙度的变化规律;根据单沟槽底面几何精度和表面粗糙...  相似文献   

8.
In automotive manufacturing, the repair polishing process of an automotive body is still manually performed by skilled polishing workers. This is because skilled workers can appropriately control the polishing motion and force according to the workpiece conditions based on their experience. However, the number of skilled workers has been decreasing. Additionally, the skill development of younger workers has not been satisfactorily conducted. To overcome such problems, in a previous research investigation, we developed a serial-parallel mechanism polishing machine that effectively reproduced the polishing motion and force of skilled workers. This replication system, however, had limited use because the acquired polishing techniques could not adapt to various workpiece conditions, such as shape and size. The present study aimed to expand the polishing method for application to curved surfaces, in other words, adapt the replication system to changes in the workpiece shape. In the past polishing methods for curved surfaces, the workpiece shape was acquired by using CAD data or external sensors that often led to an increase in process time and cost. However, the newly proposed method in this study requires neither CAD data nor external sensors, and was able to effectively achieve simultaneous posture and force control on unknown curved surface. The experimental results showed that the skilled polishing techniques were successfully replicated on an unknown curved surface and the surface roughness was greatly improved by integrating the newly proposed method into the skilled polishing replication system.  相似文献   

9.
Polishing is one typical material removal process, which is widely used for surface processing of porcelain tiles. Due to complex polishing head structure and kinematics features of polishing machine, polishing for porcelain tile is a high energy intensity process. To improve the energy efficiency by optimizing operation, it is essential to establish an energy consumption model for polishing process. This article divides the total energy of polishing process into constant energy and chip formation energy. Furthermore, this article focuses on modeling the chip formation energy for optimizing operation. Based on the energy conversion mechanism and energy flow characteristics, the chip formation energy of polishing process is further divided into three motion energies that govern the abrasive trajectory over the tile surface. A conceptual framework of simulation-based approach is then proposed for modeling chip formation energy of polishing process by integrating the above calculation algorithm of motion energy. Finally, a case study is implemented to illustrate the validation of the proposed approach, and the results show that it is a feasible tool to model the chip formation energy of polishing process and reveal the influence of different process operational parameters.  相似文献   

10.
介绍了一种弹性模抛光与小磨头修正抛光相结合的两步研抛法实现中等口径光学非球面表面的快速抛光。利用弹性模预抛光来保证小工具抛光模型的准确稳定,并采用补偿的方法减小弹性模抛光对面形精度的破坏作用。然后利用优化的小磨头修正残留的表面误差来提高抛光精度。应用上述方法加工非球面,在较短的抛光周期中,获得的面形P-V精度达0.35μm。  相似文献   

11.
12.
As the level of Si-wafer surface directly affects device line-width capability, process latitude, yield, and throughput in fabrication of microchips, it needs to have ultra precision surface and flatness. Polishing is one of the important processing having influence on the surface roughness in manufacturing of Si-wafers. The surface roughness in final wafer polishing is mainly affected by the many process parameters. For decreasing the surface, the control of polishing parameters is very important. In this paper, the optimum condition selection of ultra precision wafer polishing and the effect of polishing parameters on the surface roughness were evaluated by using central composite designs such as the Box-Behnken method. Moreover, in accordance with variation of process variables, there is a temperature change on pad surface. And so, this paper also researches that this temperature variation affects surface roughness of Si-wafer.  相似文献   

13.
Chemical vapor deposited(CVD) diamond film has broad application foreground in high-tech fields.But polycrystalline CVD self-standing diamond thick film has rough surface and non-uniform thickness that adversely affect its extensive applications.Laser polishing is a useful method to smooth self-standing diamond film.At present,attentions have been focused on experimental research on laser polishing,but the revealing of theoretical model and the forecast of polishing process are vacant.The paper presents a finite element model to simulate and analyze the mechanism of laser polishing diamond based on laser thermal conduction theory.The experimental investigation is also carried out on Nd:YAG pulsed laser smoothing diamond thick film.The simulation results have good accordance with the results of experimental results.The temperature and thermal stress fields are investigated at different incidence angles and parameters of Nd:YAG pulsed laser.The pyramidal-like roughness of diamond thick film leads to the non-homogeneous temperature fields.The temperature at the peak of diamond film is much higher than that in the valley,which leads to the smoothing of diamond thick film.The effect of laser parameters on the surface roughness and thickness of graphite transition layer is also carried out.The results show that high power density laser makes the diamond surface rapid heating,evaporation and sublimation after its graphitization.It is also found that the good polish quality of diamond thick film can be obtained by a combination of large incident angle,moderate laser pulsed energy,large repetition rate and moderate laser pulse width.The results obtained here provide the theoretical basis for laser polishing diamond film with high efficiency and high quality.  相似文献   

14.
超光滑表面加工技术研究进展   总被引:2,自引:0,他引:2  
针对如何高效稳定地获得粗糙度值小、少无亚表面损伤、低成本的超光滑表面的问题,分析了原子级超光滑表面加工技术的加工原理,详细阐述了几类非接触式抛光方法的加工原理及国内外最新研究进展,并着重论述了声悬浮抛光和磨料水射流抛光的研究现状。接着,在此基础上对这几类加工方法各方面的优缺点进行了对比总结。最后,针对目前超光滑表面加工技术存在的不足,指出了超光滑表面加工技术有待进一步研究的方向。研究结果表明,采用非接触式的抛光方法,对加工过程加以合理的控制,可大大降低工件表面粗糙度,改善亚表面的损伤情况;目前非接触式抛光普遍对抛光设备精度要求较高,减少加工成本是超光滑表面加工技术进行大规模推广的迫切要求。  相似文献   

15.
项筱洁 《机电工程》2011,28(4):436-439
为在曲面精加工中获得理想的表面粗糙度,通过分析表面粗糙度的形成机理,建立了粗糙度与走刀行距、进给率关系的数学模型;通过实验,建立了高速曲面铣削时粗糙度与加工倾角、主运动线速度关系的图谱,实现了在生产过程中按照加工目标的表面粗糙度确定相应的走刀行距、进给率、加工倾角、主运动线速度等加工参数.研究结果表明,该研究对提高加工...  相似文献   

16.
分析了凸轮轴轴颈在砂带抛光成形下的各粗糙度参数间的相互关联性;并验证了不同抛光参数对轴颈表面粗糙度的影响,为凸轮轴的表面粗糙度控制和抛光工艺参数设定提供了生产指导.  相似文献   

17.
Precision surfaces of optical grade have been in great demand for various applications such as high-power laser systems, astronomical reflecting telescopes glass mirrors, folding mirrors of avionics displays, reflectors, guides for transmission of hot and cold neutron beams for neutron exploration setups, electronic substrate, display covers and substrates for biomedical imaging and sensing, etc. Generation of such surfaces has been a challenge; particularly the polishing operation of optical fabrication process is quite critical which determines the final surface quality. To achieve the required optical surface parameters, a good control and systematic understanding of polishing process and its parameters are required. However, the conventional or full aperture optical polishing process still depends on operator's skills to achieve the target surface quality. To exploit the process to the extent, it is must to have a scientific understanding of material removal behavior of the polishing process, which will lead to the process becoming deterministic. This article has attempted to address this issue. Authors have summarized different material removal theories and discussed various mathematical models as proposed by researchers so far. Attempt has been made to come up with knowledge gaps which are required to be bridged in future.  相似文献   

18.
三维表面粗糙度的表征和应用   总被引:1,自引:0,他引:1  
表面粗糙度会直接影响零部件的耐磨性、密封性以及抗腐蚀性等,是评定机械加工和产品质量的重要指标。现代科技水平的不断提高对零件表面性能的要求也日益严苛。传统的二维表面粗糙度的测量和表征已经不再能够满足技术发展的要求,三维表面粗糙度由于能够更加全面、真实地反映工件表面的状态而受到人们的重视,成为研究热点。本文回顾了三维表面粗糙度的发展历史,系统地介绍了三维表面粗糙度参数及标准的发展现状,分析了表面形貌与功能特性的联系,概述了三维粗糙度参数在制造业、生物医疗、摩擦学与材料科学等领域的广泛应用,并进一步指出了三维表面粗糙度表征和应用的发展方向。未来随着相关研究(比如,三维测量的溯源性、重复性、参数表征体系等问题)的深入以及三维表面测量手段的发展,三维表面粗糙度参数也将不断完善和推广,并更多地与实际功能相结合来预测并指导生产,确保工件的表面质量。  相似文献   

19.
超薄石英晶片超精密抛光实验的研究   总被引:1,自引:0,他引:1  
为了解决超薄石英晶片高表面质量的加工问题,以及寻求一种高效低成本的加工方法,将一种新的超精密抛光工艺应用到超薄石英晶片的加工中。给出了加工过程中的抛光原理,制定出了在研磨和抛光过程中的最优实验条件,并对加工后超薄石英晶片的粗糙度和厚度做了详细的分析;讨论了磨粒的尺寸对表面粗糙度和材料去除率的影响,同时对加工过程的材料去除机理做了论述,以表面粗糙度和厚度为评价目标对超薄石英晶片的加工特性和表面质量进行了评价。研究结果表明:使用该实验的工艺加工超薄石英晶片可以得到厚度为99.4μm、表面粗糙度为0.82nm的超光滑表面;同时,该研究还发现通过延长抛光时间可以减小石英晶片的表面残余应力,可有效控制石英晶片四角“翘曲”现象,得到更好的平面度和平行度。  相似文献   

20.
Bore polishing resulting from the abrasive wear of the bore of diesel engines has become more evident with the introduction of turbo-charging and consequent high mileage. This paper identifies the principal characteristics of bore polish, suggests causes and records the examination of a particular used liner. A laboratory wear machine was then used to simulated bore polish conditions. The results are analysed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号