首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
生物样品折射率的空间变化导致了光学畸变的产生,这种畸变对于共聚焦显微镜观察厚的生物样品和活体体内组织成像是一种严重的限制。自适应光学(AO)技术是通过快速反应的变形镜使镜面发生形变来补偿像差,在共聚焦显微镜中应用自适应光学技术可以校正光学畸变,观察深层组织活动,进行活体成像和实时检测。详细分析了共聚焦显微镜中像差的来源及光学畸变的特点,讨论了目前在共聚焦显微镜中自适应光学校正的方案及研究现状,讨论了共聚焦显微镜中自适应光学的波前传感器、畸变测量和波前校正器,并探讨了目前超高分辨率显微成像技术的发展方向。  相似文献   

2.
光学显微镜是生物医学研究必不可少的工具,其中双光子显微成像技术具有大深度三维显微成像功能,被认为是深层生物组织研究的首选工具。但是,在双光子成像系统使用过程中,光学系统的装配偏差、光学元件不理想以及生物样品的不均匀性都会在成像过程中引入像差,从而降低成像质量。通过在双光子显微成像系统中引入自适应光学技术,可实现对像差的有效校正,从而提高成像的分辨率、深度和视场。介绍了双光子显微成像中的像差来源和特点,概述了自适应光学技术中不同的探测和校正方法,综述了近年来自适应光学技术在双光子显微成像中不同的应用成果,最后对自适应光学在双光子显微成像中的发展进行了展望。  相似文献   

3.
超分辨荧光显微镜突破了光学衍射极限造成的空间分辨率限制,使得生物学家能够在生命体和细胞具有活性的状态下,对其功能与结构进行高精度动态记录,有望揭示更多重要的生命现象细节。然而,由于超分辨荧光显微技术的成像视场、深度、分辨率、速度等不易兼得,所以解卷积作为一种最有效且直接的求解逆问题的框架,被广泛应用于增强超分辨显微镜的时空分辨率。研究人员聚焦于通过相应算法设计实现高质量显微图像的重建,在一定程度上克服了超分辨荧光显微镜的硬件限制,可以更好地恢复生物信息。本文首先介绍了解卷积方法的基本原理及其发展历程,接着列举了不同解卷积技术在不同模态下的重建原理和效果以及这些技术在生物学上的应用,最后总结了基于深度学习的解卷积方法在超分辨荧光显微镜技术上的最新进展和未来的发展潜力,并对包括傅里叶环相关的定量评估图像重建质量的方法的最新进展进行了阐述。  相似文献   

4.
膨胀超分辨技术是近几年出现的一种对样品制备进行改进实现分辨率提升的超分辨技术,由于其与其他光学技术的兼容性强,可以进一步提高分辨率,引起了越来越多研究人员的关注。复合膨胀技术是膨胀超分辨技术改进的一个主要发展方向之一,膨胀结合光学波动超分辨技术(ExM-SOFI)在复合膨胀技术中是一种受限较小且使用较为广泛的技术。为了增强现有ExM-SOFI技术的成像效果,本课题组将成像缓冲液技术应用于ExM-SOFI技术,以增强膨胀样品在拍摄过程中的抗淬灭能力,从而使普通染料在ExM-SOFI中的荧光强度、荧光波动幅度和闪烁比等均有增强。微管和囊泡的染色成像结果表明,使用这种技术可以使样品在高阶SOFI中保持真实结构,伪影更少,因而高阶SOFI技术可以提升膨胀样品的最终分辨率。  相似文献   

5.
基于荧光随机涨落的超分辨显微成像技术具有成像速度快、空间分辨率高、系统成本低和光毒性小的成像优势,在对生物亚细胞结构及其动态运动过程的成像和监测中具有广阔的应用前景。近年来,基于荧光发射的间歇性,发展出多种图像重建算法实现荧光涨落超分辨成像,在无须对传统的荧光显微镜做任何硬件改造的情况下,显著提升了光学成像的空间分辨率,实现了突破光学衍射极限的超分辨成像。从重建算法、成像速度、分辨率提升和图像重建质量等方面,对比分析不同类型荧光涨落超分辨方法的差异和适用范围,为生命科学研究人员针对特定的生物学问题选择最佳的超分辨方法提供参考依据。  相似文献   

6.
范文强  王志臣  陈宝刚  陈涛  安其昌 《红外与激光工程》2020,49(10):20200333-1-20200333-13
视网膜光学相干层析(OCT)技术利用外部低相干光源照射人眼眼底,并将人眼眼底散射信号进行干涉成像,获得人眼视网膜的断层图像信息,以实现人眼视网膜无创、实时、在体的光学活检。传统光学相干层析在视网膜成像时的轴向分辨率可达3 μm以上,但由于人眼个体差异和不可避免的像差限制了视网膜OCT的横向分辨率,只能达到约15~20 μm。而自适应光学作为一项波前校正的先进技术,可以校正OCT色差以及人眼有限视场和眼球运动导致的像差,将OCT横向分辨率提高到低于2 μm,以实现视网膜细胞及微细血管近衍射极限成像,及时发现患者眼底存在的早期病变。在介绍自适应光学和视网膜光学相干层析的技术特点基础上,对自适应光学在视网膜光学相干层析成像应用的国内外发展现状进行了论述,总结了自适应光学OCT视网膜高分辨成像在宽带光源色差校正、眼球运动伪影减少、自适应光学视场扩大和波前传感与校正系统简化的关键技术和未来发展趋势,以实现大视场、高效率、高灵敏度、高分辨率的高速人眼视网膜成像,为未来自适应光学OCT视网膜成像技术的研究和应用提供参考和借鉴。  相似文献   

7.
荧光超分辨显微技术自20世纪90年代诞生以来,经历了多代创新与发展,其空间分辨率已经远超衍射极限,横向分辨率能够达20 nm以下,可以实现分子尺度的生物成像与动态追踪。新一代超高分辨率显微技术的产生得益于传统超分辨技术的深度发展和结合创新。详细介绍横向分辨率在亚20 nm尺度的新一代荧光超分辨显微技术,并阐述其与传统超分辨原理的联系与区别。此外,针对分辨率的限制因素,就光学系统、扫描策略和样品制备等方面进行探讨,并展望高分辨率荧光显微技术在生物医学领域中的应用前景和发展方向。  相似文献   

8.
为了发展能够同时兼顾超分辨、快速成像和视场的荧光显微镜, 以促进其在活细胞或微观动态过程成像的应用, 将压缩感知应用到超分辨荧光显微镜中, 利用投影梯度稀疏重构算法对单帧荧光宽场图像重构, 并进行了理论分析、仿真和实验验证。结果表明, 该方法能够突破光学衍射极限, 成像分辨率达到180nm, 相比衍射极限提高1.8倍。此结果说明压缩感知能够实现单帧宽场超分辨荧光显微成像, 相比现有的方法在成像速度上有巨大的提升。  相似文献   

9.
曾明  沈建新  钮赛赛  梁春 《激光技术》2014,38(5):692-697
为了满足自适应光学系统实时快速的工作要求,将自动控制理论引入到自适应光学系统中,在不改变系统硬件性能的基础上对系统的控制部分进行了研究。首先,对自适应光学闭环控制系统进行分析,将其模块化并建立相应的数学模型;其次,在自动控制理论基础上设计控制器和相应的控制算法,并分析了控制器的性能;最后,将自动控制理论的控制方法与人眼波前像差校正相结合,使控制算法应用到自适应光学系统波前像差的校正中。结果表明,相对于传统的自适应光学系统控制方法(纯积分控制和比例-积分控制),Smith预补偿控制使自适应光学控制系统具有较高的闭环带宽和较好的动态、稳态控制性能;在模拟人眼波前像差迭代校正过程中,Smith预补偿控制器校正残余像差的快速性最好;在实际人眼动态像差校正中,Smith预补偿控制校正的残余像差值达到最小,有利于自适应光学控制系统优化。  相似文献   

10.
光学显微成像技术可以用来观察微小物体的结构细节,但在生物样品的显微成像领域中,像差的存在使得任何显微成像技术的成像质量都无法达到理论预期。为了解决这一问题,自适应光学技术被应用于不同类型的显微成像系统中进行像差的探测和校正。着重总结了自适应宽场高分辨率显微成像技术的研究动态,阐明了数字全息自适应光学技术和非相干数字全息自适应光学技术的特点、优势以及存在的问题。  相似文献   

11.
超分辨远场生物荧光成像——突破光学衍射极限   总被引:9,自引:1,他引:8  
毛峥乐  王琛  程亚 《中国激光》2008,35(9):1283-1307
长期以来,远场光学荧光显微镜凭借其非接触、无损伤,可探测样品内部等优点,一直是生命科学中最常用的观测上具.但由于衍射极限的存在,使传统的宽场光学显微镜横向和纵向的分辨率分别仅约为230 nm和1000 nm.为了揭示细胞内分子尺度的动态和结构特征,提高光学显微镜分辨率成为生命科学发展的迫切要求,在远场荧光显微镜的基础上,科学家们已经发展出许多实用的提高分辨率甚至超越分辨率极限的成像技术.例如,采用横向结构光照明提高横向分辨率到约100 nm,利用纵向驻波干涉效应将纵向分辨率提高5~10倍.然而,直到在光学荧光显微镜中引入非线性效应后,衍射极限才被真正突破,如受激荧光损耗显微镜利用非线性效应实现了30~50 nm的三维分辨率.另外应用荧光分子之间能量转移共振原理以及单荧光分子定位技术也可以突破衍射极限,甚至可以将分子定位精度提高到几个纳米的量级.  相似文献   

12.
光电成像系统受到衍射极限和像元分辨率的制约,但研究者们从未停止过脚步来突破这一限制。本文介绍了近年来开展的各种超分辨成像方法和技术,包括应用于荧光显微成像的受激发射损耗技术、结构光照明技术、光激活定位技术与随机光学重构超分辨成像技术;可应用于显微系统、光存储与眼底成像的光瞳滤波技术与径向偏振光超分辨聚焦技术;应用于空间探测的合成孔径技术、光子筛成像技术、超振荡透镜技术、亚像元技术与焦平面编码技术。主要讨论了以上超分辨方法的原理、实现手段与目前发展水平。  相似文献   

13.
超分辨显微成像技术是细胞生物学中研究细胞器结构、相互作用和蛋白质功能的强大工具,其具有突破光学衍射极限的分辨能力,从纳米尺度上为细胞生物学提供了新的分析手段,对生命科学相关领域具有重大意义.然而,受衍射极限的影响,超分辨显微镜的轴向分辨率相比于横向分辨率要更难以提高,这导致实现细胞结构亚百纳米分辨率的三维成像更为困难.从受激辐射损耗显微术和单分子定位显微术这两种主流技术出发,对目前存在的多种三维成像技术进行了原理介绍和特点分析,最后对其未来发展方向进行了展望.  相似文献   

14.
魏通达  张运海  杨皓旻 《红外与激光工程》2016,45(6):624001-0624001(6)
受激辐射损耗显微成像(STED)是一种超分辨荧光显微成像技术,它能够突破传统光学衍射极限的限制,把远场光学分辨率提高到百纳米以内,被广泛应用于生物医学等领域,是目前光学显微成像领域研究的热点之一。采用了一种基于超连续谱皮秒脉冲白激光光源的STED显微系统,实现超分辨成像。并从精密合束、脉冲延迟和损耗光残留光强几个方面探讨系统优化,从而获得最佳的成像效果。对直径约25 nm荧光微球成像实验的数据表明:该系统成像分辨率可达约60 nm,分辨能力远远高于衍射极限。另外,系统成功实现了对核孔复合物、微管和微丝等一系列生物样品的超分辨成像,共聚焦成像中某些模糊不清的结构在STED成像中清晰可辨。  相似文献   

15.
基于可逆饱和光转移过程的荧光超分辨显微技术,从原理上打破了原有的光学远场衍射极限对光学系统极限分辨率的限制,在生物、化学、医学等多个学科拥有广泛的应用前景。回顾了近年来超分辨显微研究的历史,综述了目前常见的几种基于可逆饱和光转移过程的荧光超分辨显微方法,详细描述了各自的技术特点并对比了其优缺点,阐述了相关领域内最新的研究工作进展。  相似文献   

16.
光学显微镜的出现为细胞等微观结构的研究打开了新的大门,然而衍射极限的限制使得更加精细的结构难以探测。近年来,一些充满创造性的方法突破了衍射极限,达到纳米级分辨率。氮-空位(NV)色心是金刚石中一种常见的发光缺陷,由于其具有明亮而稳定的发光性质和较长的电子自旋相干时间而被广泛应用于量子计算与量子测量中;同时,NV色心在超分辨成像技术中也发挥着巨大作用,通过与各种超分辨成像显微镜的结合,实现了对NV色心的纳米级分辨率成像,而且进一步实现高空间分辨率的量子传感。本文简单介绍了NV色心的结构与性质,以及各类成像技术的基本原理;对NV色心与超分辨成像结合的各项技术实验成果进行了归纳与比较,并对其应用进行了总结与展望。  相似文献   

17.
美国空军研究实验室(US Air ForceResearch Lab,简称USAF实验室)的SergioR.Restaino最近报导了该实验室在用于自适应光学系统的液晶技术方面的研究工作状况.任何一个光学成像系统所能达到的最高分辨率,取决于进入并通过该系统的波前质量的保真程度.波前质量的变差产生于光学设计和加工中的偏差,以及诸如大气状况、甚至于成像系统的承载结构等一些随机因素所造成的像差.近20年来,人们所研究的自适应光学(Adaptive Optics,简称AO)技术正是为了实时地消除这些像差的影响.为了使复杂的AO系统简化并降低其成本,许多单位和部门开展了各种替代技术的研究,US-AF实验室在利用液晶器件作为AO系统的校正单元方面开展了不少工作.一个光学(成像)系统能够产生高保真和高分辨率图像的能力,是该光学系统的一个重要的标志特性.用于天文或对空观测的光  相似文献   

18.
为了更好的利用液晶自适应成像系统进行具有较大屈光不正人眼像差校正及视网膜的成像,建立了一套基于低阶像差自补偿的眼底自适应成像系统。该系统采用基于人眼调节特性的光学系统进行屈光补偿,用夏克哈特曼波前传感器进行实时的波面探测,将探测所得波前畸变进行波前重构,通过LCOS波前校正器进行高阶像差的波面校正提高系统成像质量。经过校正后系统波前误差得到有效控制。光学系统的分辨率接近70 lp/mm,已经到达该光学系统的衍射极限分辨。可以得出:液晶自适应视网膜成像系统可以满足高度屈光不正情况下的人眼视网膜成像要求。  相似文献   

19.
张阳  何宇龙  宁禹  孙全  李俊  许晓军 《红外与激光工程》2021,50(8):20200363-1-20200363-10
自适应光学系统中,波前传感器的准确性和鲁棒性极大地影响像差探测能力和闭环校正效果。在波前振幅分布不均匀或信标光能量不足的情况下,哈特曼波前传感器由于存在子孔径缺光现象会导致传感精度下降,而基于远场光斑反演波前相位的无波前传感自适应系统实时性难以满足实用需求。基于深度学习复原波前的方法是通过输入远场光强图像直接求取像差,可以作为自适应光学系统的有效补充。文中通过数值模拟,证明了深度残差神经网络能够通过远场光斑直接预测波前相位的Zernike系数。实验验证了输入与重构波前相位之间校正后残差RMS为0.08λ,GPU加速后的平均计算耗时小于2 ms。该方法能较准确地预测入射波前畸变的Zernike系数,具有一定像差校正能力,适合在传统自适应光学技术中,用于测量并校正波前畸变的主要成分,或为优化式自适应光学提供良好的初始波前估计。  相似文献   

20.
望远镜的紧凑型闭环液晶自适应光学系统设计   总被引:1,自引:1,他引:1  
在利用地基大口径光学望远镜进行天文观测时,液晶自适应光学成像技术已经被应用于校正大气湍流所引起的波前像差。应用Zemax软件和尽量少的光学元件,设计出了与1200mm望远镜匹配的紧凑型闭环液晶自适应光学系统。针对本套闭环自适应光学系统自身的特殊要求,制定了具体的公差原则,并应用Zemax软件进行了公差分析,结果表明,本套闭环液晶自适应光学系统具备较宽松的公差条件,可以实现较容易的加工和装调。对该紧凑型闭环液晶自适应光学系统与1200mm望远镜对接匹配后的性能进行了相应的评价:自适应光学系统与1200mm望远镜对接匹配后的组合焦距为19.13m,F数为17.92,P-V值为0.122λ,RMS值为0.031λ,MTF曲线接近衍射极限,光学传递函数的模在33lp/mm时可以达到0.5,而成像CCD的极限分辨率为31lp/mm,充分地利用了CCD相机的分辨资源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号