首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
A novel loop heat pipe system was designed for use in solar hot water heating and an analytical model was developed to investigate its thermal performance and determine six major limits to system operation, i.e. capillary limit, entrainment limit, viscous limit, boiling limit, sonic limit, and filled liquid mass limit. Relations among the limits and several associated parameters, i.e. the heat pipe operating temperature, wicks type, heat pipe diameter, and height difference between the absorbing pipes array and condenser (heat exchanger), were established through a comprehensive analyses. It was found that the levels of capillary, entrainment, viscous, sonic, and filled liquid mass limits increased with the increasing temperature; however, the boiling limit was in the adverse trend. It was also found that the mesh screen wicks were able to obtain a higher capillary limit than sintered powder wicks, whilst other limits remained same. Larger pipe diameters would lead to higher operating limits. The height difference between the condenser (heat exchanger) and absorbing pipes (absorber) was the most important factor impacting on heat transfer capacities of the system, and largely affected the capillary limit of the system. It was noted when the pipe (inner) diameter increased to 5.6 mm or above, the governing limit of the system switched from entrainment to capillary. Relationship between the system governing limit, i.e. capillary limit, and the above addressed parameters were analysed. Adequate system configuration and operating conditions were suggested, which were summarized as follows: 6 mm of pipe inner diameter with mesh screen wicks, 58°C of heat pipe operating temperature, and 1.3 m height difference between absorber and condenser (heat exchanger). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The concept of a solar energy heat pipe latent heat storage system is presented. In order to assure large charging and discharging rates, finned heat pipes are used to transfer heat to and from the phase-change material (paraffin in this case). The evolution of the solid - liquid interface is studied by considering the radial heat transfer (due to the heat pipe wall) and the angular one (due to the fin). Two mathematical models, corresponding to exponential, respectively polynomial functions describing the fin temperature profile are presented and the results are compared. The two models allow the evaluation of the discharge time of the storage unit for a certain number of fins for a single heat pipe. When the discharge time has a fixed value, the methods presented in the paper allow to conclude whether the number of fins is sufficiently large to assure the complete solidification of the phase-change material.  相似文献   

3.
The performance of a normal micro gravitational heat pipe was investigated using the analytical and numerical models previously developed. An innovative structure of the heat pipe, i.e. the micro gravitational heat pipe with artery, was then proposed in an attempt to overcome some of the drawbacks of the normal pipe. The thermal behaviour of the new type of heat pipe was simulated, and this was compared with that of a normal micro heat pipe. A performance estimation of both pipes was carried out based on the simulation results. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Ground heat exchangers have vital importance for ground source heat pump applications. Various configurations tried to improve heat transfer in the soil. A new kind of aluminium finned pipe buried in the soil for this aim. In order to compare effectiveness of the Al finned pipe over the traditional PPRC pipe an experimental study carried out. The experimental GSHP system was installed at Y?ld?z Technical University Davupasa Campus on 800 m2 surface area with no special surface cover. Temperature data were collected using thermocouples buried in soil horizontally and vertically at various distances from the pipe center and at the inlet and the outlet of the ground heat exchanger. Experimental results were compared with results from analytical study. To compare effectiveness of the Al finned pipe and PPRC pipe a new parameter defined as transferred amount of heat per unit mass of working fluid per unit time for this aim. It is found that Al finned pipe has higher heat transfer values than the traditional PPRC pipe.  相似文献   

5.
环路型脉动热管的工质流动和传热特性实验研究   总被引:13,自引:0,他引:13  
建立了部分可视化的环路型铜-乙醇脉动热管试验台,研究了充液率、倾斜角度、环路数目等因素对脉动热管传热性能的影响。结果表明:不能形成脉动效应时工质的流型是间歇振动,形成脉动效应时工质的流型是弹状流或环状流;最佳倾角为70°~90,°最佳充液率在50%左右;热阻随着环路数目的增加而减小。  相似文献   

6.
热管用于笔记本电脑智能温控散热的分析   总被引:1,自引:0,他引:1  
随着笔记本电脑性能的不断提升,传统的单一风冷散热已经满足不了要求,传热性能优越的热管便应用于笔记本电脑散热。分析了热管用于智能温控散热系统的传热机理,并建立了传热模型.分析了用于笔记本散热的热管的热阻和总传热系数,结合实例进行了定量计算。计算结果表明热管配合智能温控风扇,能很好满足笔记本散热的要求。  相似文献   

7.
Experimental research was conducted to understand heat transfer characteristic of pulsating heat pipe in this paper, and the PHP is made of high quality glass capillary tube. Under different fill ratio, heat transfer rate and many other influence factors, the flow patterns were observed in the start-up, transition and stable stage. The effects of heating position on heat transfer were discussed. The experimental results indicate that no annular flow appears in top heating condition. Under different fall ratios and heat transfer rate, the flow pattern in PHP is transferred from bulk flow to semi-annular flow and annular flow, and the performance of heat transfer is improved for down heating case. The experimental results indicate that the total heat resistant of PHP is increased with fill ratio, and heat transfer rate achieves optimum at filling rate 50%. But for pulsating heat pipe with changing diameters the thermal resistance is higher than that with uniform diameters.  相似文献   

8.
This paper describes an experimental study of heat transfers in the smooth-walled and rib-roughened helical pipes with reference to the design of enhanced cooling passages in the cylinder head and liner of a marine propulsive diesel engine. The manner in which the repeated ribs modify the forced heat convection in the helical pipe is considered for the case where the flow is turbulent upon entering the coil but laminar in further downstream. A selection of experimental results illustrates the individual and interactive effects of Dean vortices and rib-flows on heat transfer along the inner and outer helixes of coils. The experimental-based observations reveal that the centrifugal force modifies the heat transfer in a manner to generate circumferential heat transfer variation with better cooling performance on the outer edge relative to its inner counterpart even with the agitated flow field caused by the repeated ribs. Heat transfer augmentation factor in the range of 1.3 ~ 3 times of the smooth-walled l  相似文献   

9.
A simplified model predicting the heat transfer performance of a heat sink base with a high thermal conductivity was developed. Numerical analysis was performed using the commercial software FLUENT. The investigation indicates that for heat sink bases with a high effective thermal conductivity, such as the base embedded with a typical heat pipe, the entire heat sink can be modeled as a flat plate with a uniform temperature and an effective convection heat transfer coefficient. This simplified model can be used to determine the heat transfer performance of a heat sink embedded with a typical heat pipe or vapor chamber.  相似文献   

10.
针对芯片功耗与集成度提高而导致的局部热点问题,设计了一种用于芯片散热的复合热沉环路热管系统。建立了环路热管蒸发段模型,通过数值模拟的方法,证明了复合热沉环路热管系统能够降低热点温度,提高散热表面的温度均匀程度,且散热效果与热点的分布位置有关。当热点的热流密度为160W/cm2,热沉横向、纵向导热率分别为1500W/(m?K)、24W/(m?K)时,热点温度为88.88°C,相比于无热沉时降低了5.96°C。研究了不同热沉导热率下的热沉厚度对热点温度的影响,结果表明:若导热率各项同性,热点温度随热沉厚度的增加而降低,之后趋向不变;若为各项异性,存在最优的热沉厚度,使热点温度最低。  相似文献   

11.
通过实验研究四氧化三铁(Fe3O4)纳米流体重力热管的传热性能。在不同输入功率、不同充液率、不同纳米流体质量浓度的工况下测试热管的外壁温度,再理论计算其等效对流传热系数、热阻。结果表明:当充液率为50%,输入功率为40W时,水基液重力热管和纳米流体重力热管都有最高的等效对流传热系数,并且纳米流体质量浓度为1%时,重力热管具有最高的等效对流传热系数5455.4 W.m-2.K-1,较水基液重力热管最多可增大79.1%。四氧化三铁纳米流体运用于重力热管可以有效减小其热阻、强化其传热性能。  相似文献   

12.
热管在空调排风能量回收中的应用   总被引:1,自引:0,他引:1  
通过对国内外文献的调查,介绍了当前通风空调的能耗现状,热管的结构、工作原理、特点和分类等,并结合已有的实验数据,将装有热管热回收装置的空调系统与传统的一次回风空调系统进行对比,以期探索热管热回收装置在空调排风能量回收中的作用,结果表明.装有热管热回收装置的空调系统比传统空调系统的制冷量和再热量减少,显示了热管换热器在空调系统应用中的优势.表明热管技术可以有效地利用空调排风中的低位热能,具有节能、环保等优点,有较大的开发应用价值.  相似文献   

13.
基于航空航天等领域对环路热管长距离传热的需求,设计制造了一套传热距离8.1m的圆柱型蒸发器环路热管,试验了不同加热功率、不同冷凝温度下该环路热管的启动和变工况运行性能,并对其热阻及最大传热能力进行了分析。研究结果表明:当其他条件一致、初始气液分布相同和不同时,加热功率由100W增大至160W后,本研究中的环路热管启动时间和启动温升均发生一定程度的下降;加热功率100W时,冷凝温度由10℃降低至-10℃使得环路热管启动时间增加,加热功率160W时,冷凝温度由10℃降至-10℃对环路热管的启动时间影响不大。在冷凝温度0℃下,该环路热管在100~500W范围内均能稳定运行,且200W时环路热管传热效率最高,传热温差最小,稳定运行温度最低;另外,由于系统传输距离较长,每个工况达到稳定所需要的时间也较长,分布于1000至3500S内。随着加热功率的增大,环路热管热阻先减小后逐渐增大,该环路热管传热热阻最大不超过0.09℃/W,最小为0.024℃/W;随着传热距离的增大,管路的热损失增加,总压降和热阻也变大。当传热距离基本相同时,蒸发器容积的大小、冷凝器的冷凝能力及气液管线的布置形状均在一定程度上影响环路热管的最大传热能力。  相似文献   

14.
分别选择不同的翅片间距和高度,对一种新型微槽群平板热管散热器的翅片结构进行优化,得到了热管散热器的最佳整体结构。结果表明:翅片的间距为14mm、高度为60mm时,平板热管散热器的传热性能最好。将热管、管脚以及翅片的温度与实验结果进行对比,结果吻合良好。  相似文献   

15.
为研究平行流热管的工作机理,本文基于Fluent软件中的VOF模型编写了蒸发冷凝相变的UDF程序,对不同功率下平行流热管管内两相流动和传热过程进行了数值模拟研究。模拟结果显示了初始阶段平行流热管管内的气液分布,启动阶段管内包括泡状流、弹状流、环状流等复杂流型的转变过程,稳定工作阶段工质在各并联管路中互激振荡流动。在高加热功率下,管内工质的互激振荡流动更为剧烈,热量输送距离更远。研究结果为平行流热管换热器的优化设计提供了参考依据。  相似文献   

16.
提出了一种基于太阳能碟式聚光器的Al-Si合金储能锅炉的构想,搭建了Al-Si合金与高温热管传热的实验平台。试验结果表明,Al-Si合金与高温热管之间的传热密度为54.4 kJ/m2。对Al-Si合金的传热温度分布进行模拟,以热流密度为54.4 kJ/m2,换热系数为200 W/(m2.K),空气温度25℃的对流边界条件时,模拟结果和试验测试结果比较吻合,为Al-Si合金储能锅炉设计提供了依据。  相似文献   

17.
This paper describes an experimental and theoretical study on the heat transport limits of an osmotic heat pipe operated under atmospheric pressure, using an aqueous solution of polyethylene glycol 600 (0.1 to 1.0 kmol/m3) as the working fluid and 18 tubular‐type acetyl cellulose osmotic membranes. The correlation between the heat transport rate and the effective osmotic area is clarified. Also, the effects of the physical properties of the solution and the geometry of the osmotic heat pipe (e.g., inside diameters of flow lines) on the heat transport rate are theoretically examined. The heat transport rate of the present osmotic heat pipe is found to be about 85% compared with that under an ideal condition such that the solution circulation flow rate is very large, that is, the average concentration in a membrane module is equal to that in the solution loop. © 2000 Scripta Technica, Heat Trans Asian Res, 29(7): 559–572, 2000  相似文献   

18.
Waste heat recovery helps reduce energy consumption, decreases carbon emissions, and enhances sustainable energy development. In China, energy-intensive industries dominate the industrial sector and have significant potential for waste heat recovery. We propose a novel waste heat recovery system assisted by a heat pipe and thermoelectric generator (TEG) namely, heat pipe TEG (HPTEG),to simultaneously recover waste heat and achieve electricity generation. Moreover, the HPTEG provides a good approach to bridging the mismatch between energy supply and demand. Based on the technical reserve on high-temperature heat pipe manufacturing and TEG device integration, a laboratory-scale HPTEG prototype was established to investigate the coupling performances of the heat pipes and TEGs. Static energy conversion and passive thermal transport were achieved with the assistance of skutterudite TEGs and potassium heat pipes. Based on the HPTEG prototype, the heat transfer and the thermoelectric conversion performances were investigated. Potassium heat pipes exhibited excellent heat transfer performance with 95% thermal efficiency. The isothermality of such a heat pipe was excellent, and the heat pipe temperature gradient was within 15°C. The TEG's thermoelectric conversion efficiency of 7.5% and HPTEG's prototype system thermoelectric conversion efficiency of 6.2% were achieved. When the TEG hot surface temperature reached 625°C, the maximum electrical output power of the TEG peaked at 183.2 W, and the open-circuit voltage reached 42.2 V. The high performances of the HPTEG prototype demonstrated the potential of the HPTEG for use in engineering applications.  相似文献   

19.
对使用三种水基纳米流体作为工质的铜丝平板热管的传热特性进行了实验研究.使用的纳米流体分别是平均粒径20 nm的Cu纳米颗粒、平均粒径50 nm的Cu纳米颗粒和平均粒径50 nm的CuO纳米颗粒的水基悬浮液(简称水基20 nm Cu、50 nm Cu、50 nm CuO纳米流体),着重分析了纳米流体种类,纳米颗粒质量分数、运行温度或工作压力对热管传热特性的影响.研究结果表明,使用纳米流体作为工质可以显著提高热管的传热特性;在不同运行温度条件下,不同的纳米流体均在质量分数1.0%时具有最佳传热效果;纳米流体是一种适用于铜丝平板热管的新型工质.  相似文献   

20.
林天轮  杨洪海 《节能》2010,29(8):22-25
设计加工1台脉动热管式换热器,用于夏季工况空调排风的余冷回收。通过实验,分析了风速、新排风温差等因素对余冷回收效率的影响,以及两侧压力损失随风速的变化情况。结果表明,余冷回收效率随新风、排风温差增大而升高,随风速的增大而降低。该换热器具有一定的优势,但还需进一步改进结构,以提高其效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号