首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
响应面法优化普鲁兰多糖发酵培养基   总被引:1,自引:0,他引:1  
采用响应面分析法对出芽短梗霉生产普鲁兰多糖的发酵培养基进行优化。采用Plackett-Burman实验筛选出影响普鲁兰多糖产量的主要因素为蔗糖、NaCl和FeSO4,利用最陡爬坡路径逼近响应区域,应用Box-Behnken设计和响应面分析优化得到最佳发酵培养基,发酵单位较优化前提高了30.1%。  相似文献   

2.
利用响应面分析法对桑黄菌丝体生物量及产胞内多糖的液体发酵培养基进行优化,研究碳源、氮源、无机盐对桑黄菌丝生物量、胞内多糖含量及产量的影响。在单因素筛选试验的基础上,利用Box-Benhnken设计和响应面分析法对碳源、氮源和无机盐水平进行分析。结果表明,桑黄产胞内多糖的液体发酵培养基最佳组合为:玉米粉3.9%、麸皮2.2%、KH2PO4 0.20%、MgSO4 0.10%,在此条件下的验证实验表明,胞内多糖产量可达233.107mg/L。  相似文献   

3.
以茯苓水提后残渣为原料,研究酶法提取茯苓多糖的最优工艺.以多糖提取率为考察指标,筛选木聚糖酶、纤维素酶、木瓜蛋白酶及以上三种复合酶(质量比为1:1:1)对茯苓多糖提取率的影响,以温度、pH、时间、酶的添加量为考察因素,采用响应面分析法优化提取工艺.结果表明,复合酶相较木聚糖酶、纤维素酶、木瓜蛋白酶,可显著提高茯苓多糖提...  相似文献   

4.
响应面法优化产油酵母发酵培养基   总被引:4,自引:1,他引:4  
为优化产油酵母培养基成分,选择葡萄糖、酵母粉和磷酸二氢钾为自变量,菌体油脂含量为因变量,采用中心组合设计的方法,研究自变量及其交互作用对油脂含量的影响,利用SAS6.0和响应面分析自变量和因变量的关系,模拟得到二次多项式回归方程的预测模型,并确定培养基的最佳成分为葡萄糖71g/L,酵母粉0.98g/L,KH2PO4 0.399g/L,菌体生物量21.8g/L,油脂含量达到52.833%,油脂量11.5g/L。  相似文献   

5.
采用响应面法优化木糖醇发酵培养基   总被引:7,自引:4,他引:7  
将Plackett-Burman和响应面设计相结合,对木糖醇发酵培养基进行了优化。结果表明,初始木糖浓度、酵母膏添加量以及MgSO4.7H2O浓度是影响木糖醇转化率的主要因素。优化得到的培养基组成为(g/L)木糖100.7,酵母膏5.302,NaCl6.0,MgSO4.7H2O0.379,KH2PO43,(NH4)2HPO44;通气条件为装液量100mL/250mL。此条件下木糖醇的转化率为0.784g/g。  相似文献   

6.
采用响应面法对假单胞菌(Pseudomonas sp.)FJY5-13生产胞外多糖的发酵培养基进行优化。通过Plackett-Burman试验、最陡爬坡试验及Box-Behnken试验构建回归方程,结果表明,最佳发酵培养基成分为甘油83.0 g/L、酵母浸粉5.7 g/L、NaCl 8.2 g/L、柠檬酸钠5 g/L、(NH4)2SO4 1 g/L、玉米浆粉7.5 g/L,在此条件下,胞外多糖的产量为10.50 g/L,约为优化前多糖产量7.9 g/L的1.3倍。  相似文献   

7.
响应面法优化米曲霉酸性蛋白酶的固态发酵培养基   总被引:1,自引:0,他引:1  
采用响应面法对米曲霉酸性蛋白酶的固态发酵培养基进行了优化,首先采用Plackea-Burman设计筛选出了主要影响因素,为麸皮、豆饼粉和KH2PO4,再利用Box-Behnken设计确定了最佳固态发酵培养基配方,当麸皮17.79g,豆饼粉4.53g,KH2PO40.205g,H2O 9.0mL,pH5.5时,理论最佳酸性蛋白酶活力为1032.94U/g,验证试验得到的实际平均酸性蛋白酶活力为1025.54U/g,比初始发酵培养基的酶活力提高了12.6%,验证试验结果与理论值相差0.71%(相对误差<1%),说明该方程与实际情况拟合很好.  相似文献   

8.
利用响应面法优化GSH发酵培养基   总被引:2,自引:1,他引:2  
利用Plackett-Burman试验设计,筛选出影响GSH产量的3个重要因素,分别为葡萄糖、蛋白胨、KH2PO4.在此基础上,再利用Box-Behnken试验设计及借助于MINTAB软件进行二次回归分析,确定了主要影响因素的最佳浓度,葡萄糖、蛋白胨、KH2PO4最佳发酵质量浓度分别为2.75%、3.03%、0.11%.在优化的培养基中,GSH产量达到147.02mg/L,比优化前的98.94mg/L提高48.60%.  相似文献   

9.
纳豆激酶具有良好的溶解血栓的功效,由于纳豆激酶目前的发酵水平不高,限制了其应用。该研究以纳豆激酶活力为响应值,在单因素试验基础上,采用Plackett-Burman试验、最陡爬坡试验和响应面法对纳豆激酶培养基配方进行了优化。结果表明,通过Plackett-Burman试验筛选出豆粕粉、无水氯化钙、甘油为影响纳豆激酶活力的主要因素。最后运用响应面分析确定纳豆激酶最优发酵培养基为:甘油43 g/L、豆粕粉24 g/L、无水氯化钙0.14 g/L、七水硫酸镁0.80 g/L、十二水磷酸氢二钠3.00 g/L、无水磷酸二氢钾1.00 g/L、L-甲硫氨酸0.20 g/L,此条件下纳豆激酶活力最高为(4 281±103)FU/mL,是优化前的1.97倍。  相似文献   

10.
为提高桑黄菌丝产量,利用SAS软件对桑黄菌液体发酵培养基进行优化研究。运用Plackett-Bunnan设计法筛选出影响桑黄粗多糖产量的主要因素,在此基础之上采用中心组合设计及响应面分析确定主要影响因子最佳浓度。通过试验发现,当玉米粉4.1%、麸皮2.8%,KH2PO40.32%时,桑黄胞外粗多糖产量达到最大值6.45g/L,较优化前的5.14g/L提高了25.4%。  相似文献   

11.
为了提高红曲红色素的产量,采用响应曲面分析法对红曲霉1001发酵培养基进行了优化。通过单因素实验,确立了发酵培养基的基本组分:大米粉、葡萄糖、黄豆粉、KH2PO4、NaNO3、MgSO4、ZnSO4、玉米浆。Plackett-Burman实验确定了影响红曲红色素产量的关键因素为黄豆粉、KH2PO4、NaNO3。接着进行最陡爬坡实验逼近3个关键因素的最大响应区域。在此基础上,采用Box-Benhnken Design实验设计法对发酵培养基组分进行优化,得出最佳配方为KH2PO41.52g/L,NaNO30.51g/L,黄豆粉35.00g/L,红曲红色素色价为437.73U/mL,比优化前提高了1倍。   相似文献   

12.
茯苓的生产主要为固体培养和液体发酵培养2种方式。其中,固体培养为传统人工栽培,该方法存在木材消耗量大、产量不高、不能满足大规模工业生产需要等缺点;而茯苓液体发酵培养能够连续地大规模进行工业化生产,通过控制培养条件,能在短期内获得大量预期的代谢产物。试验对茯苓液体发酵培养条件进行优化,从培养温度、接种量、培养时间3个影响因素进行考虑,通过单因素和响应面试验,确定茯苓液体发酵培养最佳条件为:培养温度27℃、接种量4%、培养天数5 d。在此优化条件下,茯苓菌丝体干质量为8.329 g·L^-1。  相似文献   

13.
李宁  李晓清  贾英民 《中国酿造》2012,31(3):116-119
采用响应面法对溶杆菌UCo1产溶菌酶的培养基进行了优化。首先对溶杆菌UCo1产溶菌酶的发酵培养基进行了单因素试验,确定了影响产酶的3个显著因素,即碳源麦芽糖,氮源大豆蛋白胨和表面活性剂Tween-20。采用Box-Behnken响应面法对溶菌酶的发酵培养基组成进行了优化,确定了最佳条件。结果表明,麦芽糖,大豆蛋白胨和Tween-20 3因素的最佳浓度分别为1.725%,3.25%,0.048%时,溶菌酶酶活达到6973.5U/mL,与模型所得到的最大预测值6990.99U/mL基本吻合,且较优化前的酶活力(6230.4U/mL)提高了11.93%。  相似文献   

14.
采用响应面分析法对产类细菌素的蜡样芽孢杆菌XH25(Bacillus cereus XH25)培养基进行优化,以金黄色葡萄球菌为指示菌,抑菌圈直径作为响应值。利用Plackett-Burman设计筛选出影响抑菌圈直径的显著因素:p H、可溶性淀粉和(NH42SO4。通过最陡爬坡实验逼近最大抑菌圈直径区域。采用中心组合设计法及响应面分析确定:pH6.15、可溶性淀粉15.32 g/L和(NH42SO4 6.02 g/L。从节约成本考虑,其他不显著因素均保持低水平浓度:酵母粉5.00 g/L、蔗糖5.00 g/L、豆粕粉5.00 g/L、MgSO4 0.20 g/L和K2HPO4 2.00 g/L。在该条件下,抑菌圈直径预测值为12.76 mm,实验测定值为12.92 mm,实验结果与模型预测值吻合,说明所建模型是切实可行的,优化后抑菌活力比优化前(10.62 mm)提高了21.66%,为Bacillus cereus XH25大规模发酵产类细菌素奠定一定基础。   相似文献   

15.
本研究利用响应面法优化可口革囊星虫抗氧化多糖的提取工艺。在单因素实验的基础上,选取提取时间、提取温度、加酶量三个因素,根据Box-Benhnken中心组合实验设计原理,确定提取工艺的最佳条件。结果表明:可口革囊星虫多糖的最佳提取工艺条件为提取温度65℃,提取时间7h,加酶量10000U/g。在此条件下,星虫粗多糖的得率为0.879%±0.001%,DPPH·清除率为72.5%。   相似文献   

16.
利用响应面分析法对Pantoea dispersa(Y08)菌降解叶黄素产香的培养基进行了优化。采用Box-Behnken实验设计,选定KH2PO4、蔗糖和混合氮源(酵母膏∶天门冬酰胺=2∶1)3个关键因子为响应因子,以叶黄素降解率为响应值建立多元二次回归方程,在分析各个因素的显著性和交互作用后,确定了Pantoea dispersa菌降解叶黄素的最优培养基为:蔗糖0.97%,混合氮源(酵母膏∶天门冬酰胺=2∶1)1.38%,KH2PO40.15%,叶黄素降解率为80.03%,与理论预测值基本吻合,比优化前提高140.67%。   相似文献   

17.
以辅酶Q10产生菌R-SL15为实验菌株,为提高其辅酶Q10产量,对其进行培养基优化,得到最优发酵培养基。采用Plackett-Burman实验设计和Box-Behnken响应面分析方法对R-SL15的培养基进行优化模型的建立,得出最优发酵培养基为:葡萄糖18.90g/L,酵母粉5.54g/L,(NH4)2SO40.98g/L,KH2PO40.95g/L,牛肉膏6g/L,MgSO4.7H2O0.75g/L,FeSO4.7H2O100mg/L,NaCl10g/L,蒸馏水1L。辅酶Q10产量为51.31mg/L,比优化前的25.74mg/L提高了99.34%。该回归模型高度显著(R2=0.9423),拟合性好,可用于预测。  相似文献   

18.
为提高米曲霉(Aspergillus oryzae)液体发酵生产中性蛋白酶的能力,采用单因素试验、Plackett-Burman(PB)试验筛选碳源、氮源和无机盐,并通过响应面法优化其最佳配比,提高米曲霉液体发酵生产中性蛋白酶的活性。结果表明,米曲霉液体发酵生产中性蛋白酶的最佳碳源、氮源和无机盐分别为玉米粉、牛肉膏和氯化钙,发酵的最优条件为玉米粉添加量17 g/L,牛肉膏添加量10 g/L,氯化钙添加量0.04 g/L,接种量5%,装液量60 mL/250 mL,于30 ℃条件下发酵84 h。在此优化条件下,产生的中性蛋白酶活性从最初的21.4 U/mL提高至110.5 U/mL。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号