首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effective thermal management of electronic integrated devices with high powder density has become a serious issue, which requires materials with high thermal conductivity (TC). In order to solve the problem of weak bonding between graphite and Cu, a novel Cu/graphite film/Cu sandwich composite (Cu/GF/Cu composite) with ultrahigh TC was fabricated by electro-deposition. The micro-riveting structure was introduced to enhance the bonding strength between graphite film and deposited Cu layers by preparing a rectangular array of micro-holes on the graphite film before electro-deposition. TC and mechanical properties of the composites with different graphite volume fractions and current densities were investigated. The results showed that the TC enhancement generated by the micro-riveting structure for Cu/GF/Cu composites at low graphite content was more effective than that at high graphite content, and the strong texture orientation of deposited Cu resulted in high TC. Under the optimizing preparing condition, the highest in-plane TC reached 824.3 W·m−1·K−1, while the ultimate tensile strength of this composite was about four times higher than that of the graphite film.  相似文献   

2.
Based on the production of a carbon nanotube (CNT) assembly, a new technique is developed for preparing CNT/epoxy (EP) composite films with high tensile strength and electrical conductivity. CNTs are synthesized by floating catalyst spray pyrolysis. After self-assembling into a hollow cylindrical assembly, CNTs are drawn and wound on a rotating drum to form a uniform CNT film. EP resin solutions of different concentrations are used to fill into the pores within the film under different pressures and form composite films after hot-press curing. The permeability of the EP resin and thus the interfacial bonding between the CNT and the EP resin are studied by varying the concentration of the EP resin solution and the pressure used for impregnation. Under optimal preparation conditions, the composite film contains CNTs of a high content of 59 wt.%, and shows a high tensile strength of 1.4 GPa and a high electrical conductivity of 1.4x10^5 S·m^-1, 159% and 309% higher than those of the neat CNT film, respectively.  相似文献   

3.
In this work, a high-performance fiber strain sensor is fabricated by constructing a double percolated structure, consisting of carbon nanotube (CNT)/thermoplastic polyurethane (TPU) continuous phase and styrene butadiene styrene (SBS) phase, incompatible with TPU (CNT/TPU@SBS). Compared with other similar fiber strain sensor systems without double percolated structure, the CNT/TPU@SBS sensor achieves a lower percolation threshold (0.38 wt.%) and higher electrical conductivity. The conductivity of 1%-CNT/TPU@SBS (4.12×10−3 S·m−1) is two orders of magnitude higher than that of 1%-CNT/TPU (3.17×10−5 S·m−1) at the same CNT loading of 1 wt.%. Due to double percolated structure, the 1%-CNT/TPU@SBS sensor exhibits a wide strain detection range (0.2%–100%) and an ultra-high sensitivity (maximum gauge factor (GF) is 32411 at 100% strain). Besides, the 1%-CNT/TPU@SBS sensor shows a high linearity (R2 = 0.97) at 0%–20% strain, relatively fast response time (214 ms), and stability (500 loading/unloading cycles). The designed sensor can efficiently monitor physiological signals and movements and identify load distribution after being woven into a sensor array, showing broad application prospects in wearable electronics.  相似文献   

4.
SiC陶瓷具有优异的力学性能、热学性能、抗热震性能、抗化学侵蚀性能和抗氧化性能,是热交换器设备的常用基体材料。由于原料、成型工艺、烧成工艺和烧结助剂等因素制约,SiC陶瓷含有较多气孔、晶界、杂质和缺陷,导致其常温热导率(≤270 W·m^(-1)·K^(-1))低于碳化硅单晶材料(6H-SiC,490 W·m^(-1)·K^(-1)),且不同制备工艺下热导率存在较大差异。本文主要分析了温度、气孔、晶体结构和第二相对SiC陶瓷导热性能的影响,归纳了热压烧结法、放电等离子烧结法、无压烧结法、重结晶烧结法和反应烧结法制备高导热SiC陶瓷的特点,对优化烧结助剂种类及含量、高温热处理和添加高导热第二相等改善SiC陶瓷导热性能的主要措施进行阐述,并展望了未来高导热SiC陶瓷的研究方向,为未来制备低成本、高导热SiC质热交换器提供理论参考。  相似文献   

5.
Solar-driven evaporation has been considered as one of the potentialmethods for desalination and sewage treatment.However,optical concentrators andcomplex multi-component systems are essential in advanced technologies,resulting inlow efficiency and high cost.Here,we synthesize a reduced graphene oxide-basedporous calcium alginate(CA-rGO)hydrogel which exhibits good performance in lightabsorption.More than 90%of the light in the whole spectrum can be absorbed.Meanwhile,the water vapor escapes from the CA-rGO film extremely fast.The waterevaporation rate is 1.47 kg·m-2·h-1,corresponding to the efficiency 77%under only 1 kW'm 2 irradiation.The high evaporation efficiency is attributed to the distinctive structureof the film,which contains inherent porous structure of hydrogel enabling rapid watertransport throughout the film,and the concave water surfaces formed in the hydrophilicpores provide a large surface area for evaporation.Hydrophobic rGO divides theevaporation surface and provides a longer three-phase evaporation line.The test onmultiple cyclic radiation shows that the material has good stability.The CA-rGO hydrogelmay have promising application as a membrane for solar steam generation indesalination and sewage treatment.  相似文献   

6.
The thermal conductivities, thermal diffusivity, thermal anisotropy ratio, and thermal boundary resistance for the multilayered microstructure of a carbon nanotube (CNT) array are reconstructed experimentally using the 3ω method with two different width metal heaters. The thermal impedance in the frequency domain and sensitivity coefficients are introduced to simultaneously determine the multiple thermal parameters. The thermal conductivity at 295 K is 38 W · m−1 · K−1 along the nanotube growth direction, and two orders of magnitude lower in the direction perpendicular to the tubes with the anisotropy ratio as large as 86. Separation of the contact and CNT array resistances is realized through circuit modeling. The measured thermal boundary resistances of the CNT array/Si substrate and insulating diamond film interfaces are 3.1 m2 · K · MW−1 and 18.4 m2 · K · MW−1, respectively. The measured thermal boundary resistance between the heater and diamond film is 0.085 m2 · K · MW−1 using a reference sample without a CNT array. The thermal conductivity for a CNT array already exceeds those of phase-changing thermal interface materials used in microelectronics.  相似文献   

7.
Conductive films have emerged as appealing electrode materials in flexible supercapacitors owing to their conductivity and mechanical flexibility. However, the unsatisfactory electrode structure induced poor output performance and undesirable cycling stability limited their application. Herein, a well-designed film was manufactured by the vacuum filtration and in-situ polymerization method from cellulose nanofibrils (CNFs), molybdenum disulfide (MoS2), and polypyrrole. The electrode presented an outstanding mechanical strength (21.3 MPa) and electrical conductivity (9.70 S·cm−1). Meanwhile, the introduce of hydrophilic CNFs induced a desirable increase in diffusion path of electrons and ions, along with the synergistic effect among the three components, further endowed the electrode with excellent specific capacitance (0.734 F·cm−2) and good cycling stability (84.50% after 2000 charge/discharge cycles). More importantly, the flexible all-solid-state symmetric supercapacitor delivered a high specific capacitance (1.39 F·cm−2 at 1 mA·cm−2) and a volumetric energy density (6.36 mW·h·cm−3 at the power density of 16.35 mW·cm−3). This work provided a method for preparing composite films with desired mechanical and electrochemical performance, which can broaden the high-value applications of nanocellulose.  相似文献   

8.
Polycyclic aromatic hydrocarbons with zigzag peripheries are high perspective candidates for organic electronics. However, large fused acenes are still poorly studied due to the tedious synthesis. Herein we report a non-substituted fused bistetracene DBATT (2.3,8.9-dibenzanthanthrene) as the semiconductor on low-voltage-driven organic thin-film transistors. The systematic studies of thin-film growth on various self-assembled monolayer (SAM) modified gate dielectrics and the electrical performances were carried out. The sub-monolayer of the semiconductor film shows larger island domains on the alkyl chain SAM. This device exhibits the hole mobility of 0.011 cm2·V−1·s−1 with a current ratio of Ion/Ioff above 105.  相似文献   

9.
We demonstrated a simple and environment-friendly method in thepreparation of N-doped carbon/PANI(NCP)composite without binder.The structureand the property of NCP have been characterized by XPS,IR,XRD,SEM,CV,GCD and EIS.The results reveal that NCP has high capacitance performance of up to 615 F·g-1at 0.6A·g-1.Additionally,the asymmetric NCP300/lcarbon supercapacitor delivers a highcapacitance(111 F·g-1at 1A·g-1)and a capacity retention rate of 82%after 1200 cyclesat 2A·g-1.The ASC cell could deliver a high energy density of 39.1 W·h·kg-1at a powerdensity of 792.6 W·kg-1.  相似文献   

10.
Solar thermal desalination (STD) is a promising and sustainable techno- logy for extracting clean water resources. Whereas recent studies to improve STD performance primarily focus on interfacial solar evaporation, a non-traditional bottom heating method was designed in this study. Herein, we prepared the polyvinyl alcohol/graphene oxide (PVA-GO) composite membrane and adhered to the bottom of a beaker using crystallized PVA. The GO was loaded on a non-woven fabric and different concentrations of PVA were compared for their effect on the evaporation efficiency. The results showed that the addition of PVA increased the evaporation rate. The surface characteristic of GO membrane without PVA was a fibrous filamentous structure as observed by SEM, whereby the fibers were clearly visible. When the PVA concentration reached 6%, the non-woven fiber was completely wrapped by PVA. Under the action of a fixed light intensity, the photothermal conversion rates of GO, 2% PVA-GO, 4% PVA-GO and 6% PVA-GO membrane device could reach 39.93%, 42.61%, 45.10% and 47.00%, respectively, and the evaporation rates were 0.83, 0.88, 0.94 and 0.98 kg·m−2·h−1, respectively. In addition, the PVA-GO composite membrane showed an excellent stability, which has significance for industrial application.  相似文献   

11.
We report a green and facile approach for the synthesis of NiFe2O4 (NF) nanoparticles with good crystallinity. The prepared materials are studied by various techniques in order to know their phase structure, crystallinity, morphology and elemental state. The BET analysis revealed a high surface area of 80.0 m2·g−1 for NF possessing a high pore volume of 0.54 cm3·g−1, also contributing to the amelioration of the electrochemical performance. The NF sample is studied for its application in supercapacitors in an aqueous 2 mol·L−1 KOH electrolyte. Electrochemical properties are studied both in the three-electrode method and in a symmetrical supercapacitor cell. Results show a high specific capacitance of 478.0 F·g−1 from the CV curve at an applied scan rate of 5 mV·s−1 and 368.0 F·g−1 from the GCD analysis at a current density of 1 A·g−1 for the NF electrode. Further, the material exhibited an 88% retention of its specific capacitance after continuous 10000 cycles at a higher applied current density of 8 A·g−1. These encouraging properties of NF nanoparticles suggest the practical applicability in high-performance supercapacitors.  相似文献   

12.
A ternary single-walled carbon nanotubes/RuO2/polyindole (SWCNT/RuO2/PIn) nanocomposite was fabricated by the oxidation polymerization of indole on the prefabricated SWCNT/RuO2 binary nanocomposites. The nanocomposite was measured by FTIR, XRD, SEM, TEM, EDS and XPS, together with the electrochemical technique. The electrochemical results demonstrated that the symmetric supercapacitor used SWCNT/RuO2/PIn as electrodes presented 95% retention rate after 10000 cycles, superior capacitive performance of 1203 F·g−1 at 1 A·g−1, and high energy density of 33 W·h·kg−1 at 5000 W·kg−1. The high capacitance performance of SWCNT/RuO2/PIn nanocomposite was mainly ascribed to the beneficial cooperation effect among components. This indicated that the SWCNT/RuO2/PIn nanocomposite would be a good candidate for high-performance supercapacitors.  相似文献   

13.
Heterostructure is an effective strategy to facilitate the charge carrier separation and promote the photocatalytic performance. In this paper, uniform SrTiO3 nanocubes were in-situ grown on TiO2 nanowires to construct heterojunctions. The composites were prepared by a facile alkaline hydrothermal method and an in-situ deposition method. The obtained SrTiO3/TiO2 exhibits much better photocatalytic activity than those of pure TiO2 nanowires and commercial TiO2 (P25) evaluated by photocatalytic water splitting and decomposition of Rhodamine B (RB). The hydrogen generation rate of SrTiO3/TiO2 nanowires could reach 111.26 mmol·g−1·h−1 at room temperature, much better than those of pure TiO2 nanowires (44.18 mmol·g−1·h−1) and P25 (35.77 mmol·g−1·h−1). The RB decomposition rate of SrTiO3/TiO2 is 7.2 times of P25 and 2.4 times of pure TiO2 nanowires. The photocatalytic activity increases initially and then decreases with the rising content of SrTiO3, suggesting an optimum SrTiO3/TiO2 ratio that can further enhance the catalytic activity. The improved photocatalytic activity of SrTiO3/TiO2 is principally attributed to the enhanced charge separation deriving from the SrTiO3/TiO2 heterojunction.  相似文献   

14.
Heat conduction in a free-standing chemical vapor-deposited polycristalline diamond film has been investigated by means of combined front and rear photoacoustic signal detection techniques and also by means of a “mirage” photothermal beam deflection technique. The results obtained with the different techniques are consistent with a value of α=(5.5±0.4)×10−4 m2 · s−1 for thermal diffusivity, resulting in a value ofκ=(9.8±0.7)×102 W·m−1·K−1 for thermal conductivity when literature values for the density and heat capacity for natural diamond are used.  相似文献   

15.
Carbon aerogels, monolithic porous carbons derived via pyrolysis of porous organic precursors synthesized via the sol–gel route, are excellent materials for high-temperature thermal insulation applications both in vacuum and inert gas atmospheres. Measurements at 1773K reveal for the aerogels investigated thermal conductivities of 0.09W · m−1 · K−1 in vacuum and 0.12W · m−1 · K−1 in 0.1MPa argon atmosphere. Analysis of the different contributions to the overall thermal transport in the carbon aerogels shows that the heat transfer via the solid phase dominates the thermal conductivity even at high temperatures. This is due to the fact that the radiative heat transfer is strongly suppressed as a consequence of a high infrared extinction coefficient and the gaseous contribution is reduced since the average pore diameter of about 600nm is limiting the mean free path of the gas molecules in the pores at high temperatures. Based on the thermal conductivity data detected up to 1773K as well as specific extinction coefficients determined via infrared-optical measurements, the thermal conductivity can be extrapolated to 2773K yielding a value of only 0.14W· m−1 · K−1 in vacuum.  相似文献   

16.
Vacuum insulation panels (VIPs) have a thermal resistance that is about a factor of 10 higher than that of equally thick conventional polystyrene boards. VIPs nowadays mostly consist of a load-bearing kernel of fumed silica. The kernel is evacuated to below 1 mbar and sealed in a high- barrier laminate, which consists of several layers of Al-coated polyethylene (PE) or polyethylene terephthalate (PET). The laminate is optimized for extremely low leakage rates for air and moisture and thus for a long service life, which is required especially for building applications. The evacuated kernel has a thermal conductivity of about 4 × 10−3 W · m−1 · K−1 at room temperature, which results mainly from solid thermal conduction along the tenuous silica backbone. A U-value of 0.2 W · m−2 · K−1 results from a thickness of 2 cm. Thus slim, yet highly insulating fa?ade constructions can be realized. As the kernel has nano-size pores, the gaseous thermal conductivity becomes noticeable only for pressures above 10 mbar. Only above 100 mbar the thermal conductivity doubles to about 8 × 10−3 W · m−1 · K−1, such a pressure could occur after several decades of usage in a middle European climate. These investigations revealed that the pressure increase is due to water vapor permeating the laminate itself, and to N2 and O2, which tend to penetrate the VIP via the sealed edges. An extremely important innovation is the integration of a thermo-sensor into the VIP to nondestructively measure the thermal performance in situ. A successful “self-trial” was the integration of about 100 hand-made VIPs into the new ZAE-building in Würzburg. Afterwards, several other buildings were super-insulated using VIPs within a large joint R&D project initiated and coordinated by ZAE Bayern and funded by the Bavarian Ministry of Economics in Munich. These VIPs were manufactured commercially and integrated into floorings, the gable fa?ade of an old building under protection, the roof and the facades of a terraced house as well as into an ultra-low-energy “passive house” and the slim balustrade of a hospital. The thermal reliability of these constructions was monitored using an infrared camera.Invited paper presented at the Seventh European Conference on Thermophysical Properties, September 5-8, 2005, Bratislava, Slovak Republic.  相似文献   

17.
随着电力电子器件封装密度提高, 开发导热性能优异的热界面材料受到了广泛关注。绝大多数传统导热填料的热导率较低, 因此合成新型高导热填料是提高热界面材料导热性能的重要途径。本研究通过简单的熔盐法合成了高导热的磷化硼(BP)颗粒, 与氮化硼(h-BN)混合并通过搅拌和浇注的方法填充到环氧树脂(EP)基体中制备得到树脂基复合材料(BP-BN/EP)。实验结果表明:采用三盐法(NaCl : KCl : LiCl)合成的BP产率最高达到74%, 相对于单盐法(41%)和双盐法(39%)分别提高了33%和35%。对于BP-BN/EP复合材料, 复合材料的微结构显示BP和BN颗粒均匀分布在环氧树脂基体。当混合填料体积分数为30%时, 该复合材料的热导率达到1.81 W•m-1•K-1, 是纯树脂热导率(0.21 W•m-1•K-1)的8.6倍, 这与BP颗粒作为桥梁连接相邻BN颗粒形成导热网络有关。除此以外, 相较于不含BP的复合材料(SBN-BN/EP), BP-BN/EP复合材料展现出更加优异的热导率、热稳定性和较好的热力学性能。因此, 熔盐法合成的BP在热管理领域具有较大的应用前景。  相似文献   

18.
Carbon nanotubes (CNTs) as superior support materials for functional nanoparticles (NPs) have been widely demonstrated. Nevertheless, the homogeneous loading of these NPs is still frustrated due to the inert surface of CNTs. In this work, a facile gas-phase pyrolysis strategy that the mixture of ferrocene and CNTs are confined in an isolated reactor with rising temperature is developed to fabricate a carbon-coated Fe3O4 nanoparticle/carbon nanotube (Fe3O4@C/CNT) composite. It is found the ultra-small Fe3O4 NPs (<10 nm) enclosed in a thin carbon layer are uniformly anchored on the surface of CNTs. These structural benefits result in the excellent lithium-ion storage performances of the Fe3O4@C/CNT composite. It delivers a stable reversible capacity of 861 mA·h·g−1 at the current density of 100 mA·g−1 after 100 cycles. The capacity retention reaches as high as 54.5% even at 6000 mA·g−1. The kinetic analysis indicates that the featured structural modification improves the surface condition of the CNT matrix, and contributes to greatly decreased interface impendence and faster charge transfer. In addition, the post-morphology observation of the tested sample further confirms the robustness of the Fe3O4@C/CNT configuration.  相似文献   

19.
采用十八烷基三甲基溴化铵(OTAB)阳离子表面活性剂对BN微米片进行有机化改性,研究了BN表面改性对BN/环氧树脂复合材料导热性能的影响。当OTAB浓度为0.6 g · L-1时,BN表面的OTAB吸附量接近饱和。BN表面改性提高了环氧树脂对BN的浸润性,降低了BN的导热系数。SEM观察及黏度测试结果表明:BN表面改性改善了BN/环氧树脂复合材料的界面性能及体系相容性。由于界面热阻的降低,改性BN/环氧树脂复合材料的导热系数高于未改性BN/环氧树脂复合材料,当BN填充量为30%(填料与树脂基体的质量比)时,改性BN/环氧树脂复合材料的导热系数为1.03 W (m · K)-1,是未改性BN/环氧树脂导热系数(0.48 W (m · K)-1)的2.15倍。  相似文献   

20.
This article describes the development of a method to measure the normal-to-plane thermal conductivity of a very thin electrically insulating film on a substrate. In this method, a metal film, which is deposited on the thin insulating films, is Joule heated periodically, and the ac-temperature response at the center of the metal film surface is measured by a thermo-reflectance technique. The one-dimensional thermal conduction equation of the metal/film/substrate system was solved analytically, and a simple approximate equation was derived. The thermal conductivities of the thermally oxidized SiO2 films obtained in this study agreed with those of VAMAS TWA23 within ± 4%. In this study, an attempt was made to estimate the interfacial thermal resistance between the thermally oxidized SiO2 film and the silicon wafer. The difference between the apparent thermal resistances of the thermally oxidized SiO2 film with the gold film deposited by two different methods was examined. It was concluded that rf-sputtering produces a significant thermal resistance ((20 ± 4.5) × 10−9 m2·K·W−1) between the gold film and the thermally oxidized SiO2 film, but evaporation provides no significant interfacial thermal resistance (less than ± 4.5 × 10−9 m2·K·W−1). The apparent interfacial thermal resistances between the thermally oxidized SiO2 film and the silicon wafer were found to scatter significantly (± 9 × 10−9 m2·K·W−1) around a very small thermal resistance (less than ± 4.5 × 10−9 m2·K·W−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号