首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
以聚吡咯(PVPK60)为表面活性剂和碳源,采用流变相法合成了xLiFePO·yLi(PO/C正极材料样品。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)对样品形貌和结构进行了测试;采用电池测试仪和电化学工作站对样品电化学性能进行了测试,分析了不同复合比(x:y)对其结构和电化学性能的影响。研究表明:复合材料中存在两相复合与元素掺杂两种效应;当复合比为5∶1时材料的电化学性能最优,在0.1和10C倍率下放电容量分别达到162.7和104.6mAh·g-1,且具有良好的循环稳定性。  相似文献   

2.
采用水热法、化学沉淀法分别制备了BiWO、CuO光催化剂,并将二者与石墨烯复合制备了CuO/BiWO/GR复合光催化剂,通过XRD进行了结构表征。以丙酸为牺牲剂,考察了n(BiWO)∶n(CuO)值、石墨烯(GR)掺杂量、丙酸用量对复合光催化剂光催化产氢性能的影响。结果表明:当复合催化剂中n(BiWO)∶n(CuO)=1∶1.3、石头墨烯的掺杂量为7%、丙酸用量为4mL时产氢性能最好。该研究结果可为利用废水中有机酸光催化制取氢气提供理论指导。  相似文献   

3.
用原位合成法、水热法、共沉淀法和浸渍沉淀法分别制备了负载型纳米Fe/Al 催化剂前驱体,并进一步将其还原和硫化制成FeS/Al 催化剂用于HS分解制氢的反应中,同时用BET、XRD、TPR和IR等对催化剂或前驱体的比表面积、晶相结构、孔径分布、还原性和吸附性等进行了表征。结果表明,原位合成法制备的FeS/Al催化剂平均粒径较小,比表面积较大,有利于催化剂的还原和硫化,HS在该催化剂表面形成的化学吸附态较强,HS容易发生解离,初活性高于其他方法制备的催化剂,反应60h后催化剂的活性没有出现明显下降。  相似文献   

4.
电动车的发展对锂离子电池正极材料提出了更高的要求.锰基富锂相xLi2MnO3·(1-x) LiMnO2 复合材料因其高容量、价格低廉以及环境友好等优点成为锂离子电池正极材料的研究热 点.采用两步水热法成功合成了分散均匀的0.4Li2MnO3·0.6LiMnO2 复合材料,并对其结构和电 化学性能进行了研究.结果表明:经电化学活化后的材料容量可达189.4mAh/g,30周后材料的放 电容量较常规充放电活化高约10mAh/g.电化学活化能有效激活Li2MnO3 相并增加材料的容量, 这为含Li2MnO3 相的复合材料提供了增强电化学性能的方法.  相似文献   

5.
通过溶胶-凝胶法分别制备了Ce-TiO/ACF、N-TiO/ACF和Ce-N-TiO/ACF复合光催化剂,以甲醛为目标污染物,研究了单一负载Ce、N催化剂和同时负载Ce、N催化剂对甲醛降解效率的影响。试验结果表明:表面负载的光催化剂颗粒均匀,为锐钛矿型,掺杂后的复合光催化剂样品吸收光谱产生了红移;掺杂后的复合光催化剂样品降解能力强于未掺杂样品;Ce掺杂TiO 的最佳掺杂比例n(Ce/TiO)为0.8%,相对于未掺杂样品催化净化低浓度甲醛效率提高了17.06%,对高浓度的甲醛降解率提高了15.28%;N掺杂TiO2的最佳掺杂比例n(N/TiO)为1.5%,相对于TiO/ACF,对低浓度甲醛催化效率提高了1.90%,对高浓度的甲醛降解率提高了9.86%;Ce、N共掺杂TiO 的最佳掺杂比例n(Ce):n(N):n(TiO)为0.8:6:100,相对于TiO/ACF,对低浓度的甲醛降解率提高了5.04%。  相似文献   

6.
以Na3V2(PO4)3(NVP)为基础材料,以海藻酸钠为碳源,采用化学合成方法,对NVP材料进行碳复合、非金属离子掺杂,合成了具有优异电化学性能的NVP/C复合正极材料。探究了材料组成、合成温度、微观结构等对NVP复合材料电化学性能的影响。研究结果表明,海藻酸钠形成的碳骨架结构拥有良好的机械强度,将其在高电流密度下进行充放电时,碳骨架能够保持稳定不坍塌,提高材料的循环性能和倍率性能;当加入50 mL的海藻酸钠水溶液并经800℃烧时,NVP/C复合材料的电化学性能最佳,在0.5 C的低倍率下其首次放电比容量为110.3 mAh·g-1,当倍率增加到50 C时,其放电比容量为78.1 mAh·g-1,当循环2 000圈之后其放电比容量保持率高达80.4%,其库伦效率基本保持在100%,远优于已报道的研究结果。  相似文献   

7.
以开放框架结构的普鲁士蓝材料为基础,在络合剂和富钠环境下通过共沉淀法,对锰基普鲁士蓝钠离子电池正极材料进行Fe2+掺杂研究,来提升其电化学性能。经过X射线衍射(XRD)、电子扫描显微镜(SEM)、X射线光电子能谱(XPS)检测和电化学测试表征。结果表明,在0.1 C电流密度下100圈循环后半电池的比容量为83.2 mA·h/g,容量保持率为69.3%。在倍率测试中比容量波动幅度不超过50%,5 C的大电流密度下保持61 mA·h/g的比容量,材料的改性明显提高了半电池的稳定性。  相似文献   

8.
采用阳极氧化法在纯钛表面制备出了TiO纳米管阵列薄膜。以罗丹明B为目标降解物,20W紫外灯(λ=253.7nm)作为光源,探讨了制备Au-TiO 纳米管阵列(Au-TNTs)的最佳工艺,并采用扫描电镜(SEM)、X射线衍射物相分析(XRD)、能谱分析(EDS)等对样品进行了表征。结果表明,以1g/LHAuCl+30g/LHBO为沉积液,当沉积电压为2.5V、超声条件下电沉积时间为60s时,可制得理想稳定的Au-TNTs;Au掺入量占薄膜质量的16.71%,Au的掺入并没有改变TiO 纳米管阵列的表面形貌及晶型,但却显著提高了TiO纳米管阵列的光催化活性。将Au-TNTs用于制糖废水的光催化降解,结果发现:当光照时间为30h、pH值为1时,Au-TNTs对制糖废水的光催化降解率可达89.59%,比TNTs高出80%。Au-TNTs对制糖废水的光催化降解过程符合一级动力学过程。  相似文献   

9.
开发高性能钠离子电池负极材料,亟须解决过渡金属硫化物在充放电过程中存在的容量快速衰减问题。以Ni-MOF为前驱体,通过溶剂热处理引入Fe元素并进行气相硫化,制备了含双金属硫化物的FeS2/NiS2/C多孔空心球材料。电化学测试结果表明:该材料作为钠离子电池的负极,与NiS2/C相比,其可逆比容量、循环稳定性以及倍率性能均得到显著提高;利用电化学阻抗测试和不同扫速下的循环伏安测试对电极材料的电子传输和离子扩散速率进行分析,证实复合材料优异的电化学性能表现归因于其增强的反应动力学。该研究表明,金属有机框架(Metal-organic frameworks, MOFs)衍生的双金属硫化物具有优异的电化学性能,是一种具有良好应用前景的高性能钠离子电池负极材料。  相似文献   

10.
针对磷化铁(FeP)在充放电过程中存在体积膨胀及导电性差等问题,阻碍了其作为钠离子负极材料的进一步发展。针对此问题,通过高速球磨法在FeP中添加Cu来调节纳米粉末的微观形貌和结构,从而调节负极的电化学性能。XRD表征结果表明:Cu的添加降低了FeP的结晶度,但是并未导致其他次要相的生成。电化学测试表明:Cu的添加提高了电极的循环稳定性和倍率性能,添加10%Cu的FeP钠离子负极表现出优异的电化学性能,容量显著提高100%以上,在50 mA/g的电流密度下,电压范围在0~3 V之间循环200次后容量稳定在180 mA·h/g。电化学性能的改善是由粉末的微观结构变化以及导电性的提高而导致的,在两者的协同作用下,缓解了FeP的体积膨胀,提高了电极的电子电导率和电化学可逆性。  相似文献   

11.
为了改善Na4MnV(PO4)3的电化学性能,采用溶胶-凝胶法与高温固相法在750℃下烧结10 h制得了不同Zr4+掺杂浓度的Na4-xMnV1-xZrx(PO4)3钠离子电池正极材料。通过X射线衍射和扫描电子显微镜研究Zr4+离子掺杂对Na4-xMnV1-xZrx(PO4)3结构演变和电化学性能的影响。结果显示:半径为80 pm的Zr4+离子部分取代半径为74 pm的V3+离子后,材料的晶胞体积增大,这有利于Na+的快速扩散。电化学性能结果表明,Na3.9MnV0.9Zr0.1(PO4)3  相似文献   

12.
LiNi0.6Co0.2Mn0.2O2锂离子电池正极材料由于其较高的能量密度和容量密度获得了广泛的关注。但是这一材料在较高的截止电压下,循环寿命难以令人满意。针对这一问题,该文提出了利用原子层沉积的方法在其表面包覆氧化镁薄膜以改善其高电压下的循环稳定性。研究表明,在4.5 V和4.7 V的截止电压下,该材料的循环性能和倍率性能均获得了较大的提高。相比于原始材料,经过100个循环,在4.7 V的截止电压下,改性后的材料的容量仍可达到158 mAh·g-1。  相似文献   

13.
为大批量制备高储钠性能的电极材料,以乙炔为碳源气体,采用连续化学气相沉积(CVD)法原位催化生长碳纳米纤维材料,制备出自支撑式电极材料。通过扫描电子显微镜(SEM)和拉曼测试(Raman)表征分析样品的微观结构、形貌及结晶性,并对其钠离子存储电化学性能进行测试分析。结果表明:通过多温区连续大批量原位催化生长,制备出多尺寸三维结构碳纳米纤维(3D CNFs),结构的变化导致碳纳米纤维暴露出丰富的空位缺陷,这为钠离子提供了大量的吸附活性位点;三维立体的结构不仅使得电解液可以快速浸润活性材料,而且有效地增强了结构的稳定性;3D CNFs作为钠离子电池负极材料,在电流密度为0.1 A/g的条件下比容量高达150 mA·h/g,且在循环50圈之后没有明显的容量衰减,表现出优异的储钠性能和循环稳定性。  相似文献   

14.
运用高温固相法合成 SrBPO5∶Ho 3+,用 X射线衍射仪(XRD)、能谱仪(EDS)以及荧光光度计(PL) 对合成产物的结构、组成和发光性质进行了研究。结果表明:少量掺杂 Ho不会影响基质的晶体结构,Ho 均匀分布在基质材料中;荧光材料呈现出 H 3+的特征发射,发光区域在绿色区域,当掺杂量为 0.03mol 时发射强度最大;掺杂后计算得到 SrBPO5∶Ho 3+的 VBM和 CBM之间的带隙值为 5.53eV,相对掺杂前略微减少,且 SrBPO5∶Ho 3+体系属于直接带隙结构,有利于发光;Ho的掺杂在费米能级附近引起杂质能级。  相似文献   

15.
为进一步探索双核铜配合物的合成技术及结构特点,利用4- 氟水杨酸(Hfoac),1,10- 邻菲罗啉(phen)与乙酸铜通过溶剂热合成方法合成了一个中心对称的双核铜配合物[Cu(foac)(phen)]·10HO,对其进行了X射线单晶衍射仪、元素分析、红外光谱、紫外-可见光谱等分析测试。该配合物属于三斜晶系,P1空间群,晶胞参数a=0.67139(6)nm,b=1.14923(11)nm,c=1.44375(14)nm,α=72.640(9)°,β=76.857(8)°,γ=76.491(8)°。每个铜离子与2个配体foac的3个氧原子以及phen配体的2个氮原子配位形成四棱锥结构,通过分子间氢键作用构成一维链状结构,进一步利用分子间水簇作用构成了二维层状结构。  相似文献   

16.
合成了一种钴(III)配合物[Co(L)(AcOH)(HO)]·(ClO·HO[HL=乙二胺缩__乙氧基水杨醛双席夫碱](1)。利用元素分析仪、红外光谱仪和X射线衍射仪表征了合成产物的组成和结构。结构分析表明,合成的配合物1为三斜晶系,空间群P,晶胞参数为a=1.1235(2)nm,b=1.3091(3)nm,c=2.1972(4)nm,α=98.37(3)°,β=96.25(3)°,γ=112.05(3)°,V=2.9157(10)nm,Z=2,Dc=1.366g/cm,GOOF=0.994,R1=0.0710,wR2=0.2042。标题化合物分子1是由金属钴(III)离子与AcOH配体中1个O原子,水分子中的1个O原子以及配体L2-中的2个O原子和2个N原子配位而成。化合物1通过O—H…O氢键作用形成二聚体,通过C—H…O弱氢键作用形成3_D网状结构。  相似文献   

17.
Mn2+掺杂对LiFePO4正极材料结构、性能及嵌锂动力学的影响   总被引:1,自引:1,他引:0  
为了改善橄榄石型LiFePO4正极材料的性能,采用高温固相法合成了Mn掺杂的LiMnxFe1-xPO4(x=0,0.10,0.25,0.40,0.50)材料.采用X射线粉末衍射、扫描电子显微镜、充放电测试、循环伏安和电化学阻抗谱研究了材料的结构、电化学性能和锂离子嵌脱动力学.结果表明,锰掺杂的LiFePO4样品颗粒分布比较均匀,具有较小的平均粒径和窄的粒度分布,LiMnxFe1-xPO4是纯相的橄榄石结构.在不同倍率下,LiMn0.4Fe0.6PO4具有最高的放电容量和最好的动力学性能.Mn的掺杂提高了LiFePO4材料的可逆性、锂离子扩散系数和放电容量,减小了电荷转移电阻,进而提高了其动力学性能.  相似文献   

18.
以Mn3O4为锰源,采用固相反应法,在较低的温度(650℃)制得尖晶石LiMn2O4正极材料。采用X射线衍射(XRD)、扫描电镜(SEM)、循环伏安和恒流充放电等技术对其相组成、微结构和电化学性能进行表征。结果表明该正极材料结晶良好,一次粒径约为150 nm。它的电化学性能,尤其是循环性能,明显优越于在较高温度合成的LiMn2O4。在电流密度为74 mA?g-1时,测得比容量为128 mAh?g-1,在1 480 mA?g-1时,比容量为105 mAh?g-1;在室温、148 mA?g-1充放电200次循环后,容量保持率为93%。  相似文献   

19.
以不同的镍源和锰源采用共沉淀法制备LiNi0.5Mn1.5O4正极材料,利用X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学测试等手段,对制备的LiNi0.5Mn1.5O4材料进行表征和分析。结果表明:以硫酸镍和硫酸锰为原料制得LiNi0.5Mn1.5O4材料的XRD谱图没有杂质峰,SEM图像显示颗粒细小且分散均匀,电化学测试显示在0.2C下首次放电比容量为115.83 mAh/g,相比于其他镍源和锰源制备的LiNi0.5Mn1.5O4材料,具有更优的电化学性能。  相似文献   

20.
以白果壳为植物模板、稀氨水为浸煮剂、硝酸铁为前驱体溶液,制备了一种多孔白果壳遗态结构Fe/C复合材料(Fe/C-G),通过 XRD、SEM、FT-IR、XPS和 BET对其进行了表征,并考察了溶液 pH、温度、时间、初始浓度、粒径等对去除 Sb(Ⅲ)效果的影响,探讨了吸附机制。结果表明:Fe/C-G由 α-Fe、Fe 和 C组成,同时很好地保留了白果壳的多孔结构,其比表面积和平均介孔孔径分别为 46.42m/g和40.2nm;升高温度和减小吸附剂粒径有利于吸附。Fe/C-G对 Sb(Ⅲ)的吸附过程符合准二级动力学模型,在初始 Sb(Ⅲ)浓度为 5、10和 50mg/L时,其吸附量分别达 1.23、2.41和 9.23mg/g;用 Langmuir方程能很好地描述吸附等温线,属于快速的单分子层吸附,主要发生配位交换和表面络合反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号