首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
比例流量阀可根据设定信号连续比例控制执行器的速度或者转速,是重要的电液控制元件,广泛应用于各类电液系统。传统电液比例流量阀为消除负载压力变化对流量的影响,需要采用压差补偿器或流量传感器,增加了阀结构的复杂性和体积,并引起附加的节流损失。针对这些问题,根据Valvistor阀的流量放大特性,提出基于先导流量压差变化-位移校正、主阀流量放大的新型电液比例流量控制原理,该方法根据压力传感器检测的先导阀口压差实时校正先导阀芯位移,并通过主阀线性放大先导阀流量。研究中,建立新型比例流量阀的数学模型,推导得出基于补偿原理的控制策略;进一步建立阀的仿真模型,对比分析补偿前后比例流量阀的静动态特性;设计制造试验样机,通过试验验证了所提原理的可行性。测试结果表明,采用该原理可消除主阀口压差变化对输出流量的影响,动态响应快,特别适用于大流量的电液流量控制。  相似文献   

2.
现有的比例调速阀通过数字流量补偿方案对流量进行控制,已具有良好的等流量特性。但出现负载扰动时,存在阀芯响应速度慢,流量超调大的问题。结合广义预测控制理论和压差前馈控制理论,设计了一种新型数字补偿器,实现对比例调速阀输出流量的精确控制。首先针对负载扰动引起调速阀性能下降的问题设计了压差前馈控制器,通过对扰动量的补偿减小阀芯冲击;然后依据广义预测控制原理设计流量跟踪控制器,实现阀芯快速的动态响应。利用AMESim与MATLAB/Simulink搭建联合仿真模型,对该阀动静态特性进行分析。仿真结果表明:在负载阶跃时,该阀响应速度快,流量超调小,抗负载干扰能力强,具有较高的静动态特性。  相似文献   

3.
有源先导级控制的电液比例流量阀特性研究   总被引:2,自引:0,他引:2  
针对现有技术采用压差补偿器或插装式流量传感器控制流量,会降低阀的通流能力,增加系统的功率损失和发热;大流量场合只能通过阀开口面积间接控制流量,受负载变化影响控制精度低;低工作压力范围可控性差、动态响应慢;大通径采用三级结构,构造复杂等问题,提出用小功率伺服电动机驱动小排量液压泵/马达(有源)、结合液压晶体管(Valvistor),构造新的低能耗、高可控的电液比例流量阀。该方法可扩大阀的流量控制范围,提高阀在低压时的动态响应。建立阀的静态数学模型,分析获得影响阀负载流量特性最主要的因素是反馈节流槽预开口量大小;进一步建立阀的动态数学模型,获得主阀芯稳定条件。根据阀的结构组成,建立阀的仿真模型,仿真分析主阀各参数对主阀性能的影响。结果表明,反馈节流槽预开口量越小,主阀负载流量特性越好;主阀口压降越大,主阀芯响应越快;但由动态数学模型可知主阀口压降太大且先导流量较小时,阀的稳定性也会降低。研究也表明,在保证主阀良好的动态特性前提下,可通过使先导泵/马达转速随负载压力变化,实现对阀的流量补偿,从而改善阀的负载流量特性。  相似文献   

4.
为解决比例方向阀死区引起的流量非线性等问题,常常采用智能控制算法和死区补偿相结合的方法,这些方法往往都依赖于阀芯位移传感器和精确的比例方向阀模型,而对于无位移传感器的比例方向阀则无法应用,因此针对无位移传感器的比例方向阀,设计了能够不依赖位移传感器而进行死区补偿的双线性插值补偿策略。自研发的控制器采集压力传感器获取的进、出口压力值和输入电压值,进行双线性插值计算后输出校正后的电压值,以校正后的电压值代替输入电压值调节比例方向阀阀口开度以补偿死区,从而解决由死区引起的流量非线性等问题。试验结果表明,该死区补偿方法,可有效地减小无位移传感器比例方向阀的死区和滞环。  相似文献   

5.
高精度电液比例流量阀是很多重大机械装备中电液控制系统的核心部件,但采用压差补偿器或流量传感器控制流量,会降低阀的通流能力,增加系统功率损失和发热。因此,提出利用电机驱动液压泵作为先导级,连接Valvistor主阀,构造新的高精度电液比例流量阀,使主阀流量与先导流量成正比,其无论压差大小、正负皆可输出稳定的先导流量,达到提高流量阀的低压可控性和动态响应特性的目的。建立了新电液比例流量阀的数学模型,并建立其AMESim模型,对该阀的静动态特性的影响进行计算仿真分析,为进一步优化新电液比例流量阀结构提供依据。  相似文献   

6.
现在工业上多采用压差补偿型比例调速阀或者流量反馈型比例调速阀 ,但传统的压差补偿型比例调速阀控制流量小 ,控制压力低 ,控制精度也不高 ;流量反馈型比例调速阀结构复杂 ,价格昂贵。为此作者根据压差 -电气 -面积补偿原理 ,采用先导式阀体结构 ,设计了能在高压工况下对大流量进行精确控制的比例调速阀 ,测试并分析了新阀的性能。  相似文献   

7.
高性能比例电磁式节能阀坂本俊雄*杨海珍EFBG电液比例调速阀是具有负载传感功能的节能型流量控制阀,该阀能使泵出口压力自动跟踪负载所需的压力,输出流量与输入电信号的大小成比例地变化,当输入信号给定后,该阀具有很好的恒流量特性。EFBG流量阀的流量控制方...  相似文献   

8.
现有多路阀采用压力补偿器补偿载荷差异,受补偿器弹簧力、液动力等因素影响,补偿压差Δp和阀口流量系数Cd不能维持定值,导致多路阀流量控制精度较低。为此,提出多路阀补偿压差调控原理,设计了比例减压阀控制补偿压差方案,实时调控多路阀补偿压差,提高流量控制精度,同时还可以改变多路阀流量增益,实现小压差下执行器的精细动作和大压差下执行器的快速响应。首先理论分析比例减压阀控制的补偿器阀芯受力关系,进一步根据真实结构参数,在Simulation X平台中建立了补偿压差可控多路阀多学科联合模型,对多路阀的压差调控特性和流量特性开展研究。结果表明,设计的补偿压差可控型多路阀,能够在0~4 MPa范围内实时调控多路阀补偿压差,阀口流量呈非线性变化;0.5 MPa和4 MPa补偿压差下,多路阀流量可变为额定流量的48.6%和146%;进一步通过对压力补偿器阀芯液动力的预估补偿,提高了多路阀的流量控制精度。  相似文献   

9.
目前,电液比例阀在注塑机以及其它领域得到广泛应用。我厂根据本地区情况,研制并开发了复合型电液比例阀。此阀在液压系统中起到了流量、压力双控制作用,可作为一种电液控制元件,用于各种液压控制系统。它除具有双重控制作用外,还具有节省能量、限压以及温度补偿等功能,起到一阀多用的效果。在液压控制系统中可取代多个溢流阀和流量控制阀。工作原理及结构从简化原理图可看出,阀内部基本上是由两部分来分别控制流量和压力。流量控制部分由大位移比例电磁铁控制的直动型节流阀和一个三通压力补偿阀。压力补偿阀用以检测节流阀进出口压差,实现流量的恒定。另一部分是一个较小功率的比例电磁铁,控制一个先导压力阀并带动主阀进行压力控制。此主阀与前面提到的三通压力补偿阀是一体的,因此压力阀控制了流量阀的出口压力,而流量阀因为有了压力阀的补偿作用,其输出  相似文献   

10.
针对现有负载口独立控制系统中流量控制技术成本高、应用少等问题,设计了一种带阀后压差补偿的负载口独立控制阀。采用二级结构,将A形半桥应用到主阀的先导控制。研究中,根据阀的结构特点对其进行数学建模,通过合理假设推导出电闭环控制时的传递函数并进行理论分析。通过传统计算的方法对该阀进行结构参数设计,基于阀口迁移理论设计了主阀U形节流槽,采用矩形窗口的先导半桥控制,流量低,压力灵敏度也较大。进一步在AMESim平台上建立电闭环阀的仿真模型,对其动静态特性进行仿真研究。  相似文献   

11.
Flow control valves typically use mechanical pressure drop compensator or dynamic flow meter to lessen the impact of pressure drop on outlet flow. However, there are some disadvantages, such as complex mechanical structure and small flow capacity. In this paper, a kind of digital flow compensator with bilinear interpolation algorithm is presented to compensate the pressure drop, in which the pressure drop and the desired outlet flow are the two input parameters. A two-stage proportional flow control valve with the proposed compensator is investigated. Pressure drop across the metering orifice of the valve is measured and fed back to the proposed compensator. If the detected pressure drop has deviated from the threshold, then the compensator will generate a compensation signal to adjust the poppet opening of the valve, which ensures that the output flow is independent of the pressure drop. Performances of the valve with the proposed compensator are investigated by simulation and experiment. Results show that it has a reasonable static control characteristics. In addition, there is no dead-zone in its steady flow curve; pressure drop have little impact on its output flow. Its dynamics will be affected by pressure drop and input voltage. Increasing pressure drop can improve system dynamics under constant input signal conditions. On the other hand, increasing input signal can shorten the poppet's closing time, but it will result in the longer opening time and the greater overshoot in the opening stage.  相似文献   

12.
研制了一种新结构的G型π桥溢流阀,该阀的先导阀部分由锥阀芯、控制活塞、液阻R1、R2、先导阀体和先导阀弹簧等构成。液阻R1、R2、先导阀口R1构成了G型π桥液阻网络,该阀稳态调压偏差理论上是零,并具有良好的结构工艺性。  相似文献   

13.
设计一种以G型π桥液阻网络为先导控制回路的新型电液比例溢流阀,分析该阀的工作原理,确定该阀的结构及设计参数。建立由π桥电液比例溢流阀液阻的流量压力方程和阀芯力平衡方程构成的稳态特性方程组,通过对稳态特性方程组的线性化处理,得到表述π桥电液比例溢流阀稳态流量压力特性的解析表达式,并由此推导出该阀在理论上实现调压偏差为零的参数表达式,为该阀的参数设计提供正确的计算方法。用数值计算方法计算液阻参数不同时的π桥电液比例溢流阀负载特性。研制π桥电液比例溢流阀样机,完成该样机在不同液阻参数条件下的稳态特性试验。试验与理论研究结果表明,π桥电液比例溢流阀具有比传统电液比例溢流阀更好的负载 特性。  相似文献   

14.
This paper presents the realization of direct proportional flow control with load pressure compensation feature on a LCV (load control valve). Proportional flow control performance means the flow through the LCV is proportional to the pilot pressure in the control stroke. Proportional flow control decides the overrunning load lowering speed control performance of the whole system. The load pressure compensation feature means when the load pressure is too high, the flow of the LCV can be restricted about the maximum rated flow. The load pressure compensation feature is important to the safety of the system. That is because large flow means undesired fast lowering speed, which will cause accident in applications, especially those large mass overrunning load systems. In this paper, the flow control performance was simulated and the parameter relationship of the orifices was derived, which is the base for the optimizing of the compensation orifice. In addition, load pressure compensation feature was simulated and the compensation orifice size was optimized. Finally, an LCV built according to above methods was tested on a test rig. Experiment data validates the methods presented and the realization of direct flow control with load pressure compensation feature gives guidance for the direct flow control performance development of other valves.  相似文献   

15.
The discharge coefficient (Cq) is an important parameter that affects the flow capacity of hydraulic valve. Many researches of Cq focused on main stage poppet (half cone angle is 30°–45°), weather the results are suitable for pilot stage poppet (half cone angle is 10°–15°) is still uncertain. In this paper, the discharge coefficient of different pilot stage poppet valves are measured, and Fluid-Structure Interaction is used to analyze the influence of the orifice submerged jet on the discharge coefficient, visualization experiment is used to study the flow field at the tail of the valve port under different poppet structures. The results show that the stability of the flow field structure at the front of the valve port and the end of the valve port has an important influence on the discharge coefficient, and Cq of the pilot poppet valve still can be written as Cq = mRe0.5 under the condition of low Reynolds number, however the proportional coefficient m been obviously smaller than poppet valve as main stage. In poppet valve with orifice, the m value of the Cq is between 0.04 and 0.05 of the flat-end poppet, and the variation range obviously smaller than ball-end poppet valve, the reason is that a stable annular vortex was formed at the flat-end poppet port front end, which made the pressure of the poppet surface insensitive to the flow change. While in poppet valve without orifice, the m value of the Cq is between 0.02 and 0.04 of the flat-end poppet, and the variation range obviously smaller than ball-end poppet valve, the reason is that the flow field presented various pattern at the ball-end poppet port back end, which drives the m value of the Cq under different working conditions fluctuate greatly.  相似文献   

16.
基于流量前馈控制的电液负载敏感系统为容积节流复合调速系统,可将阀口全开以降低能量损失,但在超越工况下,系统速度特性会受阀口阻尼降低的影响,引发执行器超速下坠甚至安全事故等问题.据此,提出了适用于带阀后压力补偿的电液负载敏感系统的解决方法:将负载进油口容腔压力控制为一恒定值,并研制了相应的压力串级控制器.该控制器以速度反...  相似文献   

17.
为了研究水压锥阀空化流场与流量特性的相关性,对两种阀座结构的水压锥阀内部的空化射流开展了三维动态流场仿真.结果表明,直角型锥阀和倒角型锥阀均在阀芯后沿存在分离流诱发的附着型空化,在阀口下游有漩涡空化;此外,倒角阀座流道内亦存在分离流现象并形成附着型空化.倒角型流道入口处的分离流造成流体的局部加速,对于0.6 mm开口度...  相似文献   

18.
为研究比例方向阀的死区补偿,提出考虑阀口压差和阀芯正返行程的死区补偿方法。使用设计的控制器在变压差条件下进行实验,该方法可直接调整补偿值的大小,提高补偿响应速度,在阀静态特性不佳的情况下,依然有较好的补偿结果。以2 MPa压差实验结果为例,补偿前正、返行程阀的流量线性度分别为6.00%和4.83%;补偿后正、返行程阀的流量线性度分别为5.00%和3.56%。补偿前,阀的静态流量曲线滞环比较大;补偿后,阀的静态流量曲线滞环减小。2 MPa压差时,流量阀的曲线滞环补偿前为8.30%,补偿后为1.21%。提出的死区补偿方法对死区的减小或抑制效果明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号