首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 718 毫秒
1.
枯草芽孢杆菌Bacillus subtilis 168是一株安全生产的菌株,但是在2,3-丁二醇(2,3-BD)的发酵过程中,会积累较多的副产物乙偶姻(AC)。乙偶姻还原酶是催化AC合成2,3-BD的关键酶。为了提高2,3-BD合成效率,首先将乙偶姻还原酶基因acr克隆到B.subtilis 168,构建了重组菌B.subtilis 168/p MA5-acr。对重组菌进行摇瓶发酵实验,结果表明,相比出发菌,重组菌的2,3-BD产量和转化率分别提高28.62%和22.87%,主要副产物AC积累量下降了20.01%。同时,分支路径的副产物甲酸、乙酸、乳酸、琥珀酸,也有不同程度的降低。  相似文献   

2.
代谢工程在可再生资源生产燃料酒精中的研究进展   总被引:1,自引:0,他引:1  
代谢工程是指通过某些特定生化反应的修饰来定向改善细胞的特性或运用DNA重组技术创造新的化合物。利用生物技术的代谢工程构建发酵型基因工程菌,将可再生生物质资源转化生产燃料酒精,是解决人类能源紧缺、走可持续发展道路的有效途径。利用代谢工程构建可发酵生物质资源,转化生产燃料酒精的基因工程菌有酿酒酵母(S.cerevisiae)基因工程菌、大肠杆菌(E.coli)细菌基因工程菌和运动发酵单孢菌(Zymomonas mobilis)基因工程菌。(孙悟)  相似文献   

3.
虫草素(Cordycepin)是虫草属(Cordyceps)真菌产生的核心高附加值次级代谢产物之一。与其他工业菌种相比,蛹虫草在腺苷结构类似物(如虫草素)合成方面有天然的代谢通量优势。近年,随着组学分析技术和蛹虫草基因编辑技术的发展,蛹虫草虫草素合成代谢网络,尤其是关键的底物合成途径得到了完整的解析。因此,该综述对目前已知的蛹虫草虫草素合成代谢网络进行了模块化梳理,将其划分为中心碳代谢途径、单磷酸肌苷(Inosinate,IMP)途径和虫草素底物合成途径,并分析了前体物质组成和多个分散途径、关键节点对虫草素合成的影响,系统阐述了IMP物质的合成与流向,佐证了IMP的合成与代谢是虫草素合成的关键节点,为未来通过代谢工程与合成生物学策略优化蛹虫草虫草素代谢网络、构建稳定高产虫草素的蛹虫草菌株提供相对详实的背景参考。  相似文献   

4.
为了验证脱羧酶在S.cerevisiaeβ-苯乙醇合成途径中的调控作用,本文从S.cerevisiae S288C中克隆脱羧酶基因ARO10,并构建由3-磷酸甘油酸激酶基因PGK1组成型强启动子控制的ARO10基因表达载体pYES2-Ppgk-ARO10,将重组载体导入S.cerevisiae S288C,研究ARO10基因过量表达对重组菌株中β-苯乙醇合成的影响。经摇瓶实验测定,携带pYES2-Ppgk-ARO10的转化子SP10在发酵60h时β-苯乙醇产量达到最大量1.0g/L,较野生型的对照菌提高16.3%。研究结果表明,脱羧酶是S.cerevisiae S288C中β-苯乙醇生物合成途径的关键酶之一,增加ARO10基因表达量有利于提高β-苯乙醇产量,研究为构建β-苯乙醇高产工程菌株奠定了重要基础。  相似文献   

5.
生物燃料是传统化石燃料的理想替代品,微藻是生产生物燃料的优良原料,通过对微藻油脂合成和调控的了解,能够有效提高微藻生产生物柴油的效率。转录因子是一种具有特殊功能结构、行使调控基因表达功能的蛋白质分子,在复杂的油脂合成代谢过程中,转录因子能对代谢过程中多个酶系进行集体调控,从而促进藻细胞中油脂积累。从微藻油脂的合成途径出发,简要介绍了合成途径中的关键酶,重点综述了bZIP、MYB、Dof、bHLH转录因子对于微藻油脂合成的调控影响。微藻油脂合成涉及多个亚细胞单位的多条途径,是一个十分复杂的代谢网络过程,通过基因工程手段改变合成途径中相关酶的表达可以增加微藻中油脂积累。  相似文献   

6.
己二酸是一种重要的大宗化学品,主要用于合成尼龙和聚氨酯泡沫塑料,市场需求巨大,其高效生物合成至今还未实现。本文概括了酿酒酵母中构建和优化新的己二酸合成途径研究进展。首先,通过体内及体外活性测试,对催化每一步反应的酶进行筛选,构建初步的代谢途径。利用组学分析诊断和定位生物合成途径的瓶颈。对于途径中的限速酶采用蛋白质工程手段进行改造。其次,利用合成生物学和代谢工程手段优化代谢途径。优化手段具体包括:通过模块化优化,平衡各个基因之间的表达;利用蛋白支架,构建酶反应的流水线,减少中间产物的扩散,提高反应效率;通过RNA干扰技术抑制竞争代谢途径的流量,提高目标代谢途径的通量。最后,利用CRISPR/Cas9及全局转录机器工程(gTME)等最新技术进行基因组编辑、重排转录网络,最终获得己二酸的高产菌株及适用于高效生产其他芳香族化合物的底盘酵母菌株。  相似文献   

7.
莽草酸是芳香族氨基酸合成中的重要中间代谢物,可用于多种药物的化学合成.在代谢工程理论的指导下,构建积累莽草酸的高产菌株.通过构建敲除编码莽草酸激酶的基因aroL与aroK的菌株阻断莽草酸的代谢;通过构建敲除编码奎尼酸/莽草酸脱氢酶的基因ydiB的菌株减少副产物的合成;同时通过构建人工操纵子过表达编码DAHP合酶、莽草酸脱氢酶、脱氢奎尼酸脱水酶和三脱氢奎尼酸合酶的基因aroG,aroE,aroD和aroB以强化莽草酸合成途径.最终得到E.coliSHIK△aroL△ydiB菌株,摇瓶发酵能够积累莽草酸5.5 g/L.  相似文献   

8.
ε-聚赖氨酸(ε-poly-L-lysine, ε-PL)是小白链霉菌(Streptomyces albulus)产生的一种具有广谱抑菌活性的次级代谢产物,作为一种新型天然食品防腐剂在食品工业领域获得了广泛应用。通过代谢工程手段提高ε-PL生产菌的产物合成能力是降低ε-PL生产成本的有效手段,但目前关于ε-PL生物合成的关键代谢节点和调控机制还不清晰,因此还缺乏有效的靶基因。该研究基于文献挖掘了5个L-赖氨酸合成途径关键基因pyc(丙酮酸羧化酶基因)、ppc(磷酸烯醇式丙酮酸羧化酶基因)、zwf(6-磷酸葡萄糖脱氢酶基因)、dapA(二氢吡啶二羧酸合成酶基因)、lysA(二氨基庚二酸脱羧酶基因)和1个ε-PL合成酶基因(pls),并借助基因过表达手段,寻找影响ε-PL生物合成的关键靶基因。研究结果发现,过表达ppc、pyc和pls能够有效促进S.albulus WG608合成ε-PL。在补料分批发酵方式下,过表达菌株OE-ppc、OE-pyc和OE-pls的ε-PL产量较出发菌株S.albulus WG608分别提高2.8%、9.9%和16.3%,单位菌体合成能力分别提高12.7%、2...  相似文献   

9.
海藻结构简单,光合效率高,培养周期较短,并可以在海水中大量繁殖是用于生物制氢和生产生物燃料的工程藻类的首选.最近研究表明,在鉴别和生物能源相关的基因方面及微藻通路方面取得重大进展,可以通过内源基因的定位表达和转基因表达等先进的基因技术来进行工程菌的研究,本文从海藻代谢工程、高流通量的序列测定和组技术学、生物燃料的代谢工程、类脂生物合成的代谢工程、氢化酶等几个方面对工程藻类进行了研究.  相似文献   

10.
研究胱硫醚γ-裂解酶基因CYS3敲除对S. cerevisiae 3-甲硫基丙醇合成代谢的影响。将编码胱硫醚-γ-裂解酶的CYS3基因和抗性标记基因Zeocin克隆,构建敲除组件CYS3Δ:Zeocin,醋酸锂法将其转化导入S. cerevisiae S288C表达,构建CYS3基因敲除的工程菌。结果表明:摇瓶发酵120 h时,工程菌S. cerevisiae C3和S. cerevisiae S288C的3-甲硫基丙醇生成量分别为0.60 g/L和0.94 g/L,S. cerevisiae C3较野生型S288C的3-甲硫基丙醇生成量降低36.2%。说明CYS3基因敲除对S. cerevisiae的3-甲硫基丙醇有较大影响,并呈现负调节作用。  相似文献   

11.
利用酿酒酵母工程菌株生产2,3-丁二醇的 研究进展   总被引:3,自引:0,他引:3  
2,3-丁二醇在食品、化妆品、医药和运输燃料等行业具有广泛的应用,因而提高2,3-丁二醇的产量一直备受研究者们关注。目前,研究的热点主要集中于利用微生物发酵可再生资源生产2,3-丁二醇以取代传统的化学合成法,并取得了较大的进展。常见的2,3-丁二醇产生菌有克雷伯氏菌属和芽孢杆菌属,它们能有效利用可再生资源高效生产2,3-丁二醇。然而这些细菌被认为是潜在的病原菌,难以应用于大规模生产。因此,研究者们又将目光转向了酿酒酵母。就安全性和工业化生产要求而言,酿酒酵母是生产2,3-丁二醇的理想菌种。本文对国内外的相关研究进行了总结,介绍了酿酒酵母产2,3-丁二醇的优势和不足,2,3-丁二醇合成代谢途径及其基因工程菌株构建的方向,以及通过代谢工程将酿酒酵母改造成能高效、高质、高量产生2,3-丁二醇的理想菌株的研究关键。  相似文献   

12.
为了获得一种酵母快速合成白藜芦醇的体系,本研究分别从虎杖和烟草中克隆获得白藜芦醇合成途径的关键酶基因:芪合酶基因STS和4-香豆酰辅酶A连接酶基因4CL,引入3个连续重复的GSG作为连接肽,采用Overlap PCR扩增技术构建了融合基因4CL-(GSG)3-STS,进一步获得重组表达载体p ESC-TRP-4CL-(GSG)3-STS后转化至酿酒酵母中,之后利用HPLC分析检测重组酿酒酵母代谢产物,最后对重组菌合成白藜芦醇的诱导时间、底物添加浓度和添加方式进行了优化研究。结果表明:所构建的重组酿酒酵母菌体生长48 h后进行诱导表达,同时添加浓度为6 mg/L底物4-香豆酸,并且每隔2 h添加一次,8 h后白藜芦醇产量即可达7.01 mg/L。利用本体系合成白藜芦醇具有操作简单、生产周期短的特点,为进一步实现微生物大规模生产白藜芦醇提供了基础。  相似文献   

13.
Saccharomyces strains engineered to ferment xylose using Scheffersomyces stipitis xylose reductase (XR) and xylitol dehydrogenase (XDH) genes appear to be limited by metabolic imbalances, due to differing cofactor specificities of XR and XDH. The S. stipitis XR, which uses both NADH and NADPH, is hypothesized to reduce the cofactor imbalance, allowing xylose fermentation in this yeast. However, unadapted S. cerevisiae strains expressing this XR grow poorly on xylose, suggesting that metabolism is still imbalanced, even under aerobic conditions. In this study, we investigated the possible reasons for this imbalance by deleting genes required for NADPH production and gluconeogenesis in S. cerevisiae. S. cerevisiae cells expressing the XR-XDH, but not a xylose isomerase, pathway required the oxidative branch of the pentose phosphate pathway (PPP) and gluconeogenic production of glucose-6-P for xylose assimilation. The requirement for generating glucose-6-P from xylose was also shown for Kluyveromyces lactis. When grown in xylose medium, both K. lactis and S. stipitis showed increases in enzyme activity required for producing glucose-6-P. Thus, natural xylose-assimilating yeast respond to xylose, in part, by upregulating enzymes required for recycling xylose back to glucose-6-P for the production of NADPH via the oxidative branch of the PPP. Finally, we show that induction of these enzymes correlated with increased tolerance to the NADPH-depleting compound diamide and the fermentation inhibitors furfural and hydroxymethyl furfural; S. cerevisiae was not able to increase enzyme activity for glucose-6-P production when grown in xylose medium and was more sensitive to these inhibitors in xylose medium compared to glucose.  相似文献   

14.
从上海国家森林公园土壤样本中筛选到1?株菌株,经过生理生化鉴定和16S rDNA序列分析,该菌属肠杆菌属并命名为Enterobacter sp. MF024。Enterobacter sp. MF024全基因组测序结果表明该菌株包含从头合成途径和艾氏途径合成2-苯乙醇所有关键酶的编码基因。分别以葡萄糖、L-苯丙氨酸为底物进行生物转化实验,并以苯乙醛、苯丙酮酸等合成途径中间产物为底物进行验证,气相色谱-质谱法、红外光谱分析结果进一步说明Enterobacter sp. MF024具备两种2-苯乙醇合成途径,且该菌利用从头合成途径和艾氏途径产2-苯乙醇产量分别达到0.56、1.15 g/L。该菌株以葡萄糖为碳源生物合成2-苯乙醇极具应用前景。  相似文献   

15.
虾青素是一种重要的次级类胡萝卜素,具有极强的抗氧化性能,在食品、化工、医疗、水产养殖等方面具有广泛应用。虾青素的合成方法有化学合成及生物合成,化学合成是目前商业化虾青素来源,但生物合成的虾青素更安全,在食品、保健品行业更受欢迎。研究发现生物体内虾青素的代谢合成与油脂代谢路径间存在着一定的联系。本文综述了虾青素的化学合成法和生物合成法,重点综述了微生物中参与虾青素生物合成的关键基因及其代谢调控网络。概述了利用随机诱变、代谢工程、酶工程等手段提高细菌、酵母、海洋真核微生物等虾青素合成积累的研究进展。本文可为虾青素的高效合成研究提供理论指导。  相似文献   

16.
利用转录组学分析手段结合生理生化特性来研究酿酒酵母突变株高产谷胱甘肽的潜在机制。结果表明:突变株谷胱甘肽合成限速酶、抗氧化酶活力及其编码基因表达量、过氧化氢和还原型辅酶Ⅱ(nicotinamide adenine dinucleotide phosphate,NADPH)含量显著提高;丙酮酸激酶活力、丙酮酸、柠檬酸和琥珀酸含量显著降低;此外,三羧酸循环和磷酸戊糖途径的基因表达量分别显著下调和上调。因此,突变株可能在遭受内源性活性氧过氧化氢的胁迫下,通过调节谷胱甘肽合成限速酶活力加强了谷胱甘肽的合成,与抗氧化酶共同抵御氧化胁迫;丙酮酸激酶活力减弱降低了丙酮酸的合成,减少了三羧酸循环的通量,使得磷酸戊糖途径通量增加,从而提高了NADPH含量,为谷胱甘肽的合成提供了充足的还原力。  相似文献   

17.
高级醇是在酒精发酵过程中由酿酒酵母代谢产生,在酿酒酵母细胞质和线粒体中由基因编码相关的酶催化α-酮酸脱羧还原而成,是酒的重要香气成分,对酒的香气和口感有重要影响。该文综述了高级醇代谢的相关途径及部分关键基因及功能,以期深入分析了解高级醇并为通过分子生物学方式构建适用于工业生产的低产高级醇的酵母菌株提供理论参考。  相似文献   

18.
高乙醇转化率酿酒酵母工程菌株构建研究进展   总被引:3,自引:0,他引:3  
酿酒酵母(Saccharomyces cerevisiae)发酵产生乙醇的过程中,甘油的生成所消耗的碳源约占总碳源的4%~10%。减少甘油合成量可提高乙醇产率与碳源利用率。其主要策略是修饰或切除一步或多步代谢反应,或引入外源相关基因以改变碳流方向与碳流量,从而使反应向有利于生成更多乙醇而少生成甘油的方向进行。文中主要综述了近年来通过代谢工程手段阻断酿酒酵母甘油的合成或降低甘油的合成量,以提高乙醇发酵糖醇转化率的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号