首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
针对天然气管道不同损伤过程中的泄漏扩散问题,利用FLUENT软件,建立CFD仿真模型,研究了泄漏口大小对天然气泄漏扩散范围的影响。以山区与城镇交界处的天然气埋地管道为例,考虑风速随高度的变化和关闭阀门后泄漏率随时间的变化,对天然气泄漏扩散进行数值模拟,编写导入FLUENT的UDF程序并对风速和泄漏率进行了修正。实例计算结果表明,扩散范围随着泄漏口的增大而变大,在泄漏口直径为6.35、25.40mm和101.60mm时,天然气爆炸下限距地面高度分别可达92、122m和408m,天然气爆炸下限下风向距泄漏口的水平距离分别可达322、770m和1 291m;由于天然气受管道上层土壤的影响而损失大量湍能,因此泄漏气体在地表和土壤中扩散时,泄漏气体在地表的扩散范围大于在土壤中的扩散范围,其中泄漏口直径为101.60mm时扩散范围最大,天然气爆炸下限下风向距泄漏口的水平距离在地表和土壤中最大分别可达80m和105m。  相似文献   

2.
给出了天然气管道泄漏几何区域图形,建立了天然气泄漏控制方程,基于控制体积原理和多孔介质理论,利用计算流体力学软件对埋地天然气管道泄漏过程进行了数值模拟。通过模拟,得到了天然气在土壤和空气中泄漏浓度分布,并分析了风速对天然气组分的扩散影响规律,确定了安全区域,为天然气管道泄漏应急救援和安全管理提供了理论依据。  相似文献   

3.
架空天然气管道泄漏扩散数值模拟   总被引:1,自引:3,他引:1  
针对天然气管道穿孔泄漏扩散问题,结合有限容积法,建立了天然气管道不同泄漏位置的CFD仿真模型,分别对天然气管道上部、下部、迎风侧及背风侧等4种工况的泄漏扩散进行了数值模拟。研究结果表明,下部泄漏比上部泄漏气体更贴近地面且不易扩散,且横向危险范围也比上部泄漏大30~70m;迎风侧泄漏与背风侧泄漏情况相似,但迎风侧泄漏危险区域的纵剖面面积更大,更危险。应用数值方法模拟管道穿孔扩散问题,给出了不同工况下的泄漏范围,为天然气管道泄漏的安全输送及安全抢修提供了理论依据。  相似文献   

4.
采用有限容积法建立埋地管道周围土壤中油水两相流的三维流动传质数学模型, 借助C F D软件分别 模拟了冬季管道不同位置发生泄漏后周围土壤温度场的变化及油品在土壤中的扩散分布情况。模拟结果表明, 泄 漏前, 管道周围形成稳定温度场。泄漏后, 随管道泄漏位置变化, 大地温度场变化不同, 油品在土壤中呈不同形状扩 散分布。  相似文献   

5.
针对城镇埋地天然气管道泄漏扩散过程, 考虑多建筑物条件下不同组分、 不同浓度的气体扩散规律, 利用计算流体力学( CFD) 软件建立埋地管道泄漏扩散过程的三维物理模型, 将环境风场和泄漏速率以用户自定义函数形式引入边界条件中, 将模拟过程分为环境风场的稳态模拟和泄漏扩散的瞬态模拟两步, 又将泄漏扩散过程分为持续泄漏扩散和管道阀门关闭后的泄漏扩散两个阶段, 分析天然气的泄漏扩散规律。结果表明, 环境风场的稳态模拟是十分必要的, 建筑物附近流场存在三个低速区, 建筑物边缘存在较大的速度梯度; 天然气的持续泄漏扩散阶段呈现土壤层局限扩散、 上游低速区积聚、 气云浮升、H2S的沉积扩散等特征, 在阀门关闭后的阶段呈现气体扩散延续性、 气云由上而下消散等特点; 在本文工况条件下, H2S比CH4的扩散范围大, 消散时间晚, 危险性更大。  相似文献   

6.
建立了天然气管道在空旷地面发生泄漏的三维模型,对高速泄漏区域进行了网格细化。利用 CFD商业软件 FLUENT 6.3对泄漏过程进行模拟,考察了大气风速、泄漏初速度和泄漏口形状(圆形和菱形)对泄漏的影响。模拟结果表明,风速对天然气泄漏喷射射流角度有较大影响,扩散范围随扩散高度而增大;泄漏初速度对天然气喷射高度有较大影响,扩散高度随泄漏初速度的加快而变高;圆形泄漏口的硫化氢泄漏范围最宽。研究结果对加深长输天然气管道泄漏扩散规律的认识、事故的预防具有一定的意义。  相似文献   

7.
埋地输油管道泄漏渗流数值模拟   总被引:1,自引:1,他引:0  
埋地输油管道发生穿孔泄漏后,原油在土壤多孔介质中低速渗流。泄漏口附近流速随泄漏半径的增加而减小,速度等值线随时间延续变化不大,受重力影响速度等值线有不同程度的沉降。驱替前沿原油体积分数随驱替半径的增加逐渐减小,等值线梯度较大,分布较密集,并随时间的延续继续扩大。研究了管道泄漏后泄漏口流速的分布规律,以及在原油扩散过程中时间、流速对体积分数分布的影响。通过数值模拟,可以实时监测原油在地层中的扩散规律,通过地层的孔隙度可计算原油的泄漏量,对指导泄漏管道的维修、评价地层伤害提供了有效的数据支持。  相似文献   

8.
建立了埋地输油管道周围土壤多孔介质的三维流固耦合数学模型,利用FLUENT软件分别模拟了管道在不同季节泄漏前后大地温度场的变化情况及泄漏油品在土壤中的分布规律。结果表明:泄漏前,由于不同季节地表及土壤的初试温度不同,管道周围大地温差场分布明显不同。泄漏后,热油对夏季管道上下温度场影响范围较大,则对冬季管道两侧温度场影响范围较大。泄漏量相同,油品在土壤中分布情况不同。  相似文献   

9.
受地质灾害、腐蚀缺陷、第三方破坏等因素的影响,油气管道在安全运输方面存在诸多隐患,因此研究埋地天然气管道泄漏扩散规律对泄漏点预测定位、应急预案制定具有重要的现实意义。通过对埋地天然气管道泄漏扩散过程进行数值模拟,分析了泄漏速度、风速以及环境温度对CH4体积分数的影响,总结了扩散规律。研究结果可为埋地天然气管道泄漏点准确定位及应急预案提供理论支撑。  相似文献   

10.
研究燃气管道的泄漏,目的在于定性和定量地分析评价泄漏可能带来的危害。基于FLUENT软件,用GAMBIT建立三维泄漏模型,对含硫天然气管道泄漏及扩散进行了三维数值模拟。结果表明:硫化氢的存在增加燃气管道的泄漏危险区域;在自由扩散状态下,泄漏气体主要集中在泄漏口上部,且危险区域较小;当存在环境风时,泄漏危险区域向下风向下移,形成气体聚集区域,而上风向气体较少。可见,硫化氢和环境风的存在,使含硫天然气泄漏扩散的危险范围增大。  相似文献   

11.
对含硫天然气管道泄漏扩散进行模拟研究,在不同风速下对比分析了计算区域内障碍物形状、障碍物坡度对泄漏气体扩散过程的影响规律,并模拟了不同条件下H2S组分的安全区域。结果表明,障碍物的存在使泄漏气体在风力作用下堆积在障碍物的迎风面,障碍物的形状改变泄漏气体的运动路径。当障碍物为无坡度障碍物(建筑物)时,泄漏气体的扩散高度增大,且在水平方向的传输被阻碍;当障碍物为有坡度障碍物(山体)时,泄漏气体在水平方向的扩散距离增大,且在外界风力达到一定速度之后,泄漏气体绕过障碍物在背风区扩散时开始向下沉降,导致地面附近的安全区域范围减小。减小障碍物坡度,风速较小时对泄漏气体的扩散无影响,风速较大时泄漏气体将障碍物包围并在近地面处扩散;增大障碍物坡度,泄漏气体的扩散规律与无坡度障碍物(建筑物)存在时相似。模拟结果可为含硫天然气泄漏事故的处理提供参考。  相似文献   

12.
液化石油气是一种危险性气体,一旦发生泄漏,所造成的后果是非常严重的,所以其安全问题很重要。针对液化石油气的特点,建立有限空间内部发生泄漏扩散的物理模型,并对液化石油气泄漏扩散的过程进行了数值模拟。通过模拟结果分析了其扩散过程的内部流场,并对比了相对湿度不同时其扩散过程的变化规律。结果表明,由于受空气中涡流移动的影响,泄漏点两侧气体扩散的速度矢量由起初的一侧高另一侧低变为一侧低另一侧高;风速增大,加快涡流的产生和移动速度,使C3H8的质量分数分布变化更剧烈;相对湿度较大时气体的下降速度比湿度小时更快,在低于泄漏点高度的平面内,湿度增大,C3H8的质量分数也变大,缩短液化石油气报警器的报警时 间。  相似文献   

13.
针对城镇架空天然气管道动态泄漏问题,考虑不同压力等级对泄漏扩散的影响,选取高压(2.0 MPa)、次高压(1.0MPa)和中压(0.4MPa)3个压力等级管道进行模拟。先利用泄漏率计算模型分别计算临界流和亚临界流泄漏的泄漏率,得到不同压力等级管道的泄漏规律;再利用Fluent软件对动态泄漏进行数值模拟,得到天然气扩散的危险范围。结果表明,当管道体积和泄漏孔径一定时,管内压力越大,管内剩余气体质量越大,泄漏持续时间越长,天然气的危险范围也越大;随着动态泄漏的持续,泄漏率越来越小,天然气的危险范围也越来越小。天然气爆炸下限距地面高度和下风向水平距离随时间变化总体呈下降趋势,但高压(2.0MPa)管道在下风向水平方向的距离先增加再减小。  相似文献   

14.
通过建立管道模型,给定边界条件,在Fluent软件中进行求解器设置后,运用组分输运模型模拟分析了氮气置换过程中混气段的特性。由分析得到:入口处混气头形状随入口速度增大由“直线”形状过渡到“子弹头”形状;在速度方向上,混气段氮气体积分数沿管道轴线呈线性规律递减,随着时间延长,扩散范围不断变大;氮气置换速度随着入口流速的增加而增大,置换初期,混气段长度增长速度快,大于置换后期;管道置换长度随时间增加而增大,置换速度越快,管道置换长度增长越快,管道置换效率随着流速的增加而增大,但是增长率呈下降趋势。  相似文献   

15.
根据自激振荡脉冲射流理论与壁面振动减阻理论,对变径管及天然气增输器管道内天然气流动情况进行了数值模拟及分析。结果表明,天然气流经增输器时,在碰撞壁处压力波动较大,存在径向环流,引起壁面的径向振动;与普通变径管相比,增输器出口处的压强与入口相比有明显的降低,湍动能变化较大。在相同工况条件下,经增输器后压力降低,管道输气量显著增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号