首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
采用无电极电阻率法原位连续监测3种水灰比(0.23、0.35和0.53)水泥净浆早期水化过程中电阻率的变化全过程,同时结合等温量热仪测试的水化程度,建立水泥净浆随时间发展过程中浆体电阻率与孔结构发展的定量关系.结果表明:根据电阻率及其微分曲线的变化规律可以把水泥水化过程分为4个阶段:溶解期、诱导期、加速期和减速期.水灰比越低,毛细孔隙率和收缩因子变小,曲折因子变大,致使浆体电阻率升高,而孔溶液电阻率却下降.  相似文献   

2.
采用循环伏安法和交流阻抗法系统研究了粉煤灰、矿渣粉和石灰石粉水泥浆体的电学特性,通过等效电路对电学测试结果进行拟合,并将拟合所得浆体电学参数与浆体化学结合水和压汞所测孔结构之间的相关性进行比较。结果表明:浆体的化学结合水与其电阻率具有较好的正相关性,即化学结合水越多,水化程度越大,浆体电阻率越高;粉煤灰和矿渣粉可以提高浆体电阻率,而石灰石粉在5%掺量下对浆体电阻率无影响;随着水化龄期的延长,浆体孔溶液电阻增大,其变化规律与浆体电阻率一致;浆体凝胶电容和凝胶电阻与C-S-H凝胶含量有关,二者有很好的负相关性;随着水化龄期的延长,浆体孔结构曲折程度提高,交流阻抗法所测得常相角指数减小,压汞测得的分形维数增大。  相似文献   

3.
测定了不同水泥净浆电阻率随时间的变化及相应的立方体抗压强度.研究表明,在相同水灰比条件下,高标号水泥净浆电阻率先低于低标号水泥净浆电阻率,而后迅速高出.采用幂函数回归建立了同种水泥1 d电阻率与水灰比的关系.建立了水泥净浆立方体2 d抗压强度与水泥净浆1 d电阻率的线性关系,建立了7,28 d抗压强度与水泥净浆1 d电阻率的对数关系.  相似文献   

4.
矿渣对净浆早期开裂的影响   总被引:3,自引:0,他引:3  
采用新的实验方法研究了矿渣对水泥浆体早期抗裂性的影响,同时测定了浆体早期抗压强度、抗折强度和收缩率。试验结果表明,在相同水胶比情况下,用矿渣取代水泥,可明显改善混凝上的早期抗裂性,且掺量越高,改善效果越好。通过浆体收缩拉应力的计算分析,证实了掺矿渣浆体的抗裂性高于不掺矿渣浆体.  相似文献   

5.
在转炉钢渣中添加电炉渣和粉煤灰,通过重新加热来模拟炉外高温重构过程,运用岩相、XRD、强度试验及水化热测定等手段,研究了重构钢渣的组成、结构及其胶凝性能.结果显示:随着粉煤灰的增加,重构钢渣中硅酸盐矿物减少,而随着电炉渣的增多;其硅酸盐矿物增多;温度升高,低碱度重构钢渣硅酸盐矿物晶体尺寸增大,高碱度重构钢渣Alite矿增多,且矿物结构完整,游离氧化钙大幅减少.其中GB40-1350重构钢渣样品的3d水化热相比于原钢渣增加1.9倍,GBF15-1350重构钢渣样品替代30%水泥熟料后的水泥净浆28d抗压强度达到纯水泥净浆强度的99.9%.  相似文献   

6.
两性接枝共聚物超塑化剂对水泥早期水化的影响   总被引:1,自引:0,他引:1  
采用水化热测定仪及非接触式电阻率测定仪研究了两性羧酸类接枝共聚物超塑化剂(SSP)对硅酸盐水泥水化热性能及交变电场下电阻率的影响.结果表明:SSP在不延缓水泥正常凝结的前提下,能有效降低水泥早期水化放热量和水化放热速率,延缓水化放热峰值出现时间.SSP掺量为0.3%(质量分数)时,同空白水泥浆体相比,其1 d水化热降低了83%,水化热峰值出现时间延缓了20 h,最高水化放热速率降低了将近50%.SSP使水泥浆体的电阻率平衡期延长,且SSP掺量高的水泥浆体在凝结硬化阶段具有较大的电阻率增长斜率.  相似文献   

7.
This study investigated the behavior of apparent electrical resistivity of concrete mixes with the addition of rice husk ash using Wenner’s four electrode method. Tests included compressive strength, porosity and electrical conductivity of the pore solution. The contents of rice husk ash tested were 10%, 20% and 30% and results were compared with a reference mix with 100% Portland cement and two other binary mixes with 35% fly ash and 50% blast furnace slag. Higher contents of rice husk ash resulted in higher electrical resistivity, which exceeded those of all other samples. However, for compressive strength levels between 40 MPa and 70 MPa, the mix with 50% blast furnace slag showed the best combination of cost and performance.  相似文献   

8.
An experimental investigation was carried out to evaluate the mechanical and durability properties of high performance concretes containing supplementary cementitious materials in both binary and ternary systems. The mechanical properties were assessed from the compressive strength, whilst the durability characteristics were investigated in terms of chloride diffusion, electrical resistivity, air permeability and water absorption. The test variables included the type and the amount of supplementary cementitious materials (silica fume, fly ash and ground granulated blast-furnace slag). Portland cement was replaced with fly ash up to 40%, silica fume up to 15% and GGBS up to a level of 70%.The results confirmed that silica fume performs better than other supplementary cementitious materials for the strength development and bulk resistivity. The ternary mixes containing ground granulated blast-furnace slag/fly ash and silica fume performed the best amongst all the mixes to resist the chloride diffusion. The mix containing fly ash showed favourable permeation results. All the ternary combinations can be considered to have resulted in high performance concretes with excellent durability properties.  相似文献   

9.
根据粉煤灰(FA)的工业存储条件,开发了流化床试验装置,并且以HCl(HC)、H2SO4(HS)、NaOH(NH)、Na2SO4(NS)和NaCl(NC)为改性材料,通过流化床气相沉积方法(FBR-VD)来改性FA.结果表明:HC明显提高了FA-水泥浆体的流动性,其他改性材料对FA-水泥浆体流动性基本无影响;除了NS略微降低FA-水泥浆体各龄期的强度外,其他改性材料均在不同龄期起到增强作用;采用含Cl-改性剂的FA-水泥浆体中绝大部分Cl-被固化,可溶性Cl-含量远未达到国家标准规定的限值,不会影响钢筋的安全性;FBR-VD方法可将改性材料均匀地沉积于FA表面,沉积微粒尺度在500nm以下;HC和NH改性的FA表面及周围分布的氢氧化钙(CH)呈细长条状,均匀地将FA与水泥石牢固地连接为一体,起到增强作用;NC改性FA颗粒表面呈现密集堆积的CH,对FA-水泥浆体7d前的增强效果最为显著;NS改性FA表面虽然堆积了厚层CH,但与水泥石的结合松散,反而造成FA-水泥浆体强度略有下降;HS改性FA表面吸附的CH量较少,对FA-水泥浆体强度的贡献不大.  相似文献   

10.
This paper presents the effect of palm oil fuel ash fineness on the microstructure of blended cement paste. Palm oil fuel ash (POFA) was ground to two different finenesses. Coarse and high fineness palm oil fuel ash, with median particle sizes of 15.6 and 2.1 μm, respectively, were used to replace ordinary Portland cement (OPC) at 0%, 20% and 40% by binder weight. A water to binder (W/B) ratio of 0.35 was used for all blended cement pastes. The amorphous ground palm oil fuel ash was characterized by the Rietveld method. The compressive strength, thermogravimetric analysis and pore size distribution of the blended cement pastes were investigated. The test results indicate that the ground palm oil fuel ash was an amorphous silica material. The compressive strengths of the blended cement pastes containing coarse POFA were as high as that of OPC cement paste. Blended cement paste with high fineness POFA had a higher compressive strength than that with coarse POFA. The blended cement pastes containing 20% of POFA with high fineness had the lowest total porosity. The Ca(OH)2 contents of blended cement paste containing POFA decreased with increasing replacement of POFA and were lower than those of the OPC cement paste. In addition, the POFA fineness had an effect on the reduction rate of Ca(OH)2. Furthermore, the critical pore size and average pore size of blended cement paste containing POFA were lower than those of the OPC cement paste. The incorporation of high fineness POFA decreased the critical pore size and the average pore size of blended cement paste as compared to that with coarse POFA.  相似文献   

11.
含超细矿渣水泥的水化研究   总被引:13,自引:0,他引:13  
用TG-DTA,XRD,SEM研究了超细矿渣水泥的水化反应,并与硅酸盐水泥、含普通细度矿渣水泥的水化作了比较。结果表明:超细矿渣的水化程度较快、活性较高、可大量消耗水泥浆体中的Ca(OH)2,生成更多的凝胶产物,因而改善了水泥石的微观结构,提高了水泥的物理力学性能。  相似文献   

12.
掺矿渣水泥水化反应特性的试验研究   总被引:1,自引:0,他引:1  
通过抗压强度、非蒸发水量、矿渣反应度的试验测定及XRD分析,研究了掺矿渣水泥浆体的水化反应进程.结果表明,在相同龄期下,抗压强度随矿渣掺量与水胶比的增加呈减小趋势,矿渣的化学活性在28d前比较显著;掺矿渣水泥浆体的非蒸发水量高于纯水泥浆体非蒸发水量;矿渣的反应度则随其掺量的增加而减小,随水胶比的增加而增大.  相似文献   

13.
用非接触式电阻率测试仪研究了粉煤灰及石膏掺量对路面基层专用水泥24 h内电阻率的影响,分析了该水泥与32.5矿渣硅酸盐水泥凝结时间与电阻率的关系.结果表明:随着粉煤灰和石膏掺量的增加,路面基层专用水泥凝结时间延长,其中粉煤灰掺量的影响更显著;路面基层专用水泥密度小,液相体积分数小,孔连通性差,离子浓度低,因而其电阻率较大;电阻率曲线及其微分曲线上特征点出现时间和用维卡仪测得的凝结时间有较好对应关系.  相似文献   

14.
钢渣混凝土的导电性研究   总被引:2,自引:0,他引:2  
试验研究了风淬钢渣混凝土的导电性。研究结果表明风淬钢渣对混凝土的导电性具有明显改善作用,随钢渣掺量增加,混凝土的电阻率降低,电阻率的稳定性提高,对固化龄期和含水量的敏感性降低。钢渣粉磨可进一步降低混凝土电阻率,磨细时间越长,电阻率降低越明显。  相似文献   

15.
16.
高碱度水泥基材料早期开裂敏感性研究   总被引:4,自引:0,他引:4  
选用粉煤灰、减缩剂和减水剂,采用五路裂缝测定仪和非接触式电阻率测定仪,分别测试了相同水灰比、不同碱类型的水泥砂浆在干燥条件下约束收缩开裂的初始时间与水泥浆体早期水化24h内的电阻率变化,并测定了水泥砂浆在干燥环境下的抗压、抗折强度.结果表明:碱度增加会加速水泥的早期水化硬化以及微结构的形成与发展;Na^ 提高水泥砂浆早期强度、增加约束收缩开裂敏感性的作用要比K^ 的明显,尤其在低水灰比、掺减水剂时其影响更为明显;粉煤灰和减缩荆可延缓水泥(尤其是高碱度的水泥基材料)的早期水化硬化,降低水泥砂浆强度的发展,推迟初始开裂时间.  相似文献   

17.
The aim of this study was to clarify the influence of unburned carbon in palm oil fuel ash (POFA) on the fluidities of cement pastes containing a polycarboxylate-based superplasticizer (SP). The POFA was ground in a ball mill to produce ground POFA (GPOFA). Unburned carbon, which was the major part of unburned residue in GPOFA, was removed by heating at 500 °C for 1 h, producing treated POFA (TPOFA). Neither glassy phase crystallization nor agglomeration of GPOFA particles occurred during the heat treatment. Cement pastes containing GPOFA and TPOFA had lower fluidities than that of ordinary Portland cement (OPC) paste. Cement pastes containing TPOFA had higher fluidities than cement pastes containing GPOFA. Unburned carbon absorbed more SP than did the other particles in the cement pastes because of the carbon’s large specific surface area. Because of their irregular shape and porosity, GPOFA particles absorbed more SP than did OPC particles. Therefore, the higher the content of unburned carbon and GPOFA particles in the cement paste, the greater the quantity of SP needed to be added.  相似文献   

18.
The development of new binders, as an alternative to traditional cement, by the alkaline activation of industrial by-products (i.e. ground granulated slag and fly ash) is an ongoing research topic in the scientific community [Puertas F, Amat T, Jimenez AF, Vazquez T. Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cem Concr Res 2003;33(12): 2031–6]. The aim of this study was to investigate the feasibility of using and alkaline activated ground Turkish slag to produce a mortar without Portland cement (PC).Following the characterization of the slag, mortar specimens made with alkali-activated slag were prepared. Three different activators were used: liquid sodium silicate (LSS), sodium hydroxide (SH) and sodium carbonate (SC) at different sodium concentrations. Compressive and flexural tensile strength of alkali-activated slag mortar was measured at 7-days, 28-days and 3-months. Drying shrinkage of the mortar was measured up to 6-months. Setting times of the alkali-activated slag paste and PC paste were also measured.Setting times of LSS and SH activated slag pastes were found to be much slower than the setting time of PC paste. However, slag paste activated with SC showed similar setting properties to PC paste.LSS, SH and SC activated slag mortar developed 81, 29, and 36 MPa maximum compressive strengths, and 6.8, 3.8, and 5.3 MPa maximum flexural tensile strengths at 28-days. PC mortar developed 33 MPa compressive strength and 5.2 MPa flexural tensile strength. LSS and SH activated slag mortars were found to be more brittle than SC activated slag and PC mortars.Slag mortar made with LSS had a high drying shrinkage, up to six times that of PC mortar. Similarly, slag mortar made with SH had a shrinkage up to three times that of PC mortar. However, SC activated slag mortar had a lower or comparable shrinkage to PC mortar. Therefore, the use of SC as an activator for slag mortar is recommended, since it results in adequate strength, similar setting times to PC mortar and comparable or lower shrinkage.  相似文献   

19.
This research study was conducted to investigate the performance of high strength concrete (HSC) made with copper slag as a fine aggregate at constant workability and to study the effect of superplasticizer addition on the properties of HSC made with copper slag. Two series of concrete mixtures were prepared with different proportions of copper slag. The first series consisted of six concrete mixtures prepared with different proportions of copper slag at constant workability. The water content was adjusted in each mixture in order to achieve the same workability as that for the control mixture. Twelve concrete mixtures were prepared in the second series. Only the first mixture was prepared using superplasticizer whereas the other eleven mixtures were prepared without using superplasticizer and with different proportions of copper slag used as sand replacement. The results indicated that the water demand reduced by almost 22% at 100% copper slag replacement compared to the control mixture. The strength and durability of HSC were generally improved with the increase of copper slag content in the concrete mixture. However, the strength and durability characteristics of HSC were adversely affected by the absence of the superplasticizer from the concrete paste despite the improvement in the concrete strength with the increase of copper content. All concrete mixtures did not meet the strength and durability design requirements due to the segregation and dryness of the concrete paste. Therefore it can be concluded that the use of copper slag as sand substitution improves HSC strength and durability characteristics at same workability while superplasticizer is very important ingredient in HSC made with copper slag in order to provide good workability and better consistency for the concrete matrix.  相似文献   

20.
In chloride containing environment, chloride permeability of concrete is an important parameter affecting the service life of concrete structures. The primary objective of this experimental study was to study the effect of cement types on the resistance of concrete against chloride penetration for given compressive strength classes. These cements included two different types of granulated blast-furnace slag cement (CEM III/A 32.5N and CEM III/A 42.5N), a sulfate resisting cement (SRC 32.5), and a Portland cement blended with fly ash; all of which compared to an ordinary Portland cement (CEM I 42.5R). For each binder type, four concretes at different strength classes were produced and as a result 20 mixtures were obtained. Rapid chloride ion penetration tests according to ASTM C 1202 were conducted. In addition, electrical resistivity and capillary water absorption tests were carried out. In order to characterize the concrete quality, compressive strength of the specimens were also obtained. The test results clearly demonstrated that the blast-furnace slag cements have the highest resistance against chloride penetration, while the pure Portland cement and sulfate resisting cement have the lowest resistance. Concretes produced with the sulfate resisting cement had substantially higher capillary sorption compared to other mixtures. Test results confirmed the strong relationship between the chloride permeability and electrical resistivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号