共查询到17条相似文献,搜索用时 78 毫秒
1.
《中北大学学报(自然科学版)》2010,31(6)
基于求线性代数方程组的共轭梯度法的思想,建立了求一般线性矩阵方程的自反最小二乘解的迭代算法,并证明了迭代算法的收敛性.不考虑舍入误差时,迭代算法能够在有限步计算之后得到矩阵方程的自反最小二乘解;选取特殊的初始矩阵时,可求得极小范数自反最小二乘解.同时,也能够给出指定矩阵的最佳逼近自反矩阵.最后,用数值算例对有关结果进行了验证. 相似文献
2.
讨论了对称次反对称矩阵反问题的最小二乘解,得到了解的具体表达式。并讨论了用对称次反对称矩阵构造给定矩阵的最佳逼近问题,给出该问题有解的充分必要条件和解的表达式。 相似文献
3.
研究矩阵方程AX=B在Hermitian矩阵集合中的解及其最佳逼近问题,利用正交投影迭代法,给出迭代算法。证明了算法的收敛性,分析了收敛速率,最后通过数值实例,验证了算法的有效性。 相似文献
4.
D反对称矩阵反问题的最小二乘解 总被引:3,自引:0,他引:3
为了研究约束矩阵方程问题,提出了D反对称矩阵的概念,研究了D反对称矩阵反问题的最小二乘解及其最佳逼近问题;采用矩阵奇异值分解、分块降阶等方法,获得了D反对称矩阵反问题的最小二乘解一般表达式及最佳逼近解的表达式,并对其逆特值问题、线性约束方程问题给出了有解的充分必要条件,推广了文献[1]中的相关结果及应用范围。 相似文献
5.
求矩阵方程组AiXBi CiXDi=-Fi(i=1,2)的自反矩阵解.利用共轭梯度法的思想,建立相应的迭代算法.该算法可以判断矩阵方程组是否有自反矩阵解,并在有自反矩阵解时,可以在有限步迭代计算之后得到矩阵方程组的一个自反矩阵解或者极小范数自反矩阵解.另外,还给出了在解集合中对给定矩阵的最佳逼近.数值算例表明该算法对于求解此类矩阵方程组的自反矩阵解是有效的. 相似文献
6.
研究了矩阵方程广义自反矩阵解及其最佳逼近解。首先,在充分研究该类矩阵性质的基础上,将约束矩阵方程化为等价的无约束问题,并建立了两者解之间的关系。其次,给出问题有解的充要条件及解集合的通式。最后给出了最佳解的表达式。 相似文献
7.
基于共轭梯度法,建立了一类Lyapunov矩阵方程的对称最小二乘解的迭代算法.使用该算法不仅可以判断这类矩阵方程的对称解的存在性,而且无论对称解是否存在,都能够在有限步迭代计算之后得到对称最小二乘解.选取特殊的初始矩阵时,可求得极小范数对称最小二乘解,同时也能给出指定矩阵的最佳逼近对称矩阵.最后,利用数值算例对有关结果进行了验证. 相似文献
8.
9.
讨论了广义反次对称矩阵问题的最小二乘解 ,得到了解的一般表达式 ,并就该问题的特殊情形 :矩阵反问题 ,得到了可解的充分必要条件及解的通式 .此外 ,证明了最佳逼近问题解的存在惟一性 ,并给出了其解的具体表达式 . 相似文献
10.
利用标准正交基,给出了自反(反自反)矩阵约束下广义Sylvester矩阵方程AXB+CXD=E的最佳逼近解。无论矩阵方程是否相容,运用此算法都可以求出方程AXB+CXD=E的最佳逼近解。给出的2个数值实例,证明了该算法的有效性。 相似文献
11.
通过广义奇异值分解定理,得到了矩阵方程ATXA=B的反对称正交反对称解存在的一个充要条件,并导出了这个矩阵方程的与已知矩阵最佳逼近的反对称正交反对称解,同时获得了它的最小范数解。 相似文献
12.
郭丽杰 《东北电力学院学报》2007,27(4):74-78
利用矩阵的奇异值分解,建立了子矩阵约束下的矩阵反问题 AX=B 对称解存在的充分必要条件,并给出通解的表达式。进而,考虑了对任一给定矩阵的最佳逼近问题,得到了最佳逼近解。 相似文献
13.
彭振赟 《电力科学与技术学报》2002,17(2):3-6
利用矩阵的广义奇异值分解,得到了线性矩阵方程ATXA=B有中心对称解的充分必要条件及其通解的表达式.另外,导出了在矩阵方程的解集合中与给定矩阵的最佳逼近解的表达式. 相似文献
14.
首先建立Poisson方程的四阶有限差分格式,然后提出求解Poisson方程的一种新Jacobi型迭代算法,新算法与经典的Jacobi方法一样具有并行性,并给出了新算法的收敛性分析.数值实验表明,新算法比经典Jacobi方法收敛快,精度高,达到同等误差精度所需迭代次数和时间均为经典Jacobi方法的50%. 相似文献
15.
章联生 《北京石油化工学院学报》2010,18(2):59-64
讨论了约束矩阵方程问题,其理论在自动控制、经济、振动理论以及土木工程等领域有着广泛的应用。通过广义奇异值分解定理,得到了矩阵方程A^TXB=C(A∈Rn×m,B∈Rn×l,C∈Rm×l)的正交反对称解存在的一个充要条件及其通解表达式,并导出了该矩阵方程与已知矩阵最佳逼近的正交反对称解和最小范数解。 相似文献
16.
利用矩阵的奇异值分解和商奇异值分解,建立了子矩阵约束下的矩阵方程XAX=B解存在的充分必要条件,并给出了通解的表达式。进而,考虑了对任一给定矩阵的最佳逼近问题,得到了最佳逼近解。 相似文献
17.
矩阵方程AX+XB+F对称解的递推算法 总被引:3,自引:0,他引:3
提出一种求矩阵方程AX+XB=F对称解的递推算法,该算法不仅能够用于对称解存在性的判断问题,而且能够用于对称解的计算问题.选取特殊的初始矩阵时,该算法能够求出矩阵方程的极小范数对称解,以及对给定的对称矩阵进行最佳逼近的对称解. 相似文献