首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
针对目标检测中多类别、多尺度和背景复杂而导致的SSD (Single Shot Multibox Detector)算法检测精度不高的问题,提出了一种多尺度特征增强的改进SSD目标检测算法。首先将SSD网络模型的高层特征依次向下与浅层特征融合,构造一种多尺度目标检测结构。然后利用注意力机制对特征进行进一步的优化,从而达到增强网络模型特征提取的目的。最后用DIoU-NMS来处理图像目标中冗余框的问题,减少目标的漏检。在公开的NWPU VHR-10遥感数据集上将该方法与其他算法进行对比实验,其m AP较传统的SSD算法提高了6.7%。最后将改进后的算法应用于地铁安检图片检测,并在此数据集上进行消融实验来验证此算法每一阶段的有效性。  相似文献   

2.
目前大多数目标检测算法,由于尺度跨度较大而导致模型整体精确率和召回率不高,容易出现错检、漏检等现象。针对上述问题,提出一种融合超分辨率重建技术的多尺度目标检测算法。首先,算法以单阶段目标检测算法YOLO框架为基础,在颈部网络实现多尺度特征融合时加入超分辨率重建模块,避免进一步丢失较深层特征图中的细节特征。其次,使用通道注意力模块将较浅层特征图中的无关特征进行抑制,重点关注含有目标轮廓特征的通道信息,进一步增强浅层特征的表达能力。最后,在PASCAL VOC 2007和MS COCO 2017公开数据集上进行了消融实验和对比实验。实验结果表明,所提模块对检测性能有不同程度的提升,相比当前其他多尺度目标检测算法,所提算法在大、中、小三种尺度下目标平均精确率分别提升约1.20%、1.20%和1.30%,平均召回率分别提升约4.20%、3.50%和4.20%,算法整体检测性能得到进一步改善。  相似文献   

3.
针对传统目标检测算法(SSD)检测小目标精度低的问题,提出基于注意力机制与多尺度信息融合方法并将其运用于车辆检测任务.结合浅层特征图与深层特征图的优势,小目标检测分支和大中型目标检测分支的特征图采用5支路和2支路融合.在基础网络层之间加入注意力机制模块,模型会关注包含更多信息量的通道.实验结果表明,在自建车辆数据集上的均值平均精度(m AP)达到90.2%,比传统SSD算法提高了10.0%,其中小目标检测精度提高了17.9%;在PASCAL VOC 2012数据集上的类别平均精度mAP为83.1%,比主流的YOLOv5算法提高了6.4%.此外,提出算法在GTX1 660 Ti PC端的检测速度可以达到25帧/s,能够满足实时性的需求.  相似文献   

4.
水下光学图像存在色偏、低对比度、目标模糊的现象,导致水下目标检测时存在漏检、误检等问题。针对上述问题,提出了一种基于通道注意力与特征融合的水下目标检测算法。基于通道注意力设计了激励残差模块,将前向传播的特征信息进行自适应分配权重,以突出不同通道特征图的显著性,提高了网络对水下图像高频信息的提取能力;设计了多尺度特征融合模块,增加了大尺度特征图用于目标检测,利用其对应的小尺度感受野提高了网络对小尺寸目标的检测性能,进一步提高了网络对水下不同尺寸目标的检测精度;为提高网络对水下环境的泛化性能,设计了基于拼接和融合的数据增强方法,模拟水下目标的重叠、遮挡和模糊情况,增强了网络对水下环境的适应性。通过在公共数据集URPC上的实验,与YOLOv3、YOLOv4和YOLOv5相比,所提算法的平均精度均值分别提升5.42%,3.20%和0.9%,有效改善了水下复杂环境中不同尺寸目标漏检、误检的问题。  相似文献   

5.
深度估计网络通常具有较多的网络层数,图像特征在网络编码和解码过程中会丢失大量信息,因此预测的深度图缺乏对象结构细节且边缘轮廓不清晰。本文提出了一种基于多尺度深度图自适应融合的单目深度估计方法,可有效保留对象的细节和几何轮廓。首先,引入压缩与激励残差网络(SE-ResNet),利用注意力机制对不同通道的特征进行编码,从而保留远距离平面深度图的更多细节信息。然后,利用多尺度特征融合网络,融合不同尺度的特征图,得到具有丰富几何特征和语义信息的特征图。最后,利用多尺度自适应深度融合网络为不同尺度特征图生成的深度图添加可学习的权重参数,对不同尺度的深度图进行自适应融合,增加了预测深度图中的目标信息。本文方法在NYU Depth V2数据集上预测的深度图具有更高的准确度和丰富的物体信息,绝对相对误差为0.115,均方根误差为0.525,精确度最高达到99.3%。  相似文献   

6.
显著性目标检测已经被广泛应用到图像检索、图像分割、行人重识别等领域.目前主流的显著性目标检测方法通常采用短连接加权的方式融合多级别特征信息,这种方式无法精准有效地控制信息流的传递.而且,现有的检测方法通常采用单一的特征检测,导致显著性目标区域与背景的边界不连续、易模糊.因此,本文提出一种多尺度特征提取和多级别特征融合的...  相似文献   

7.
基于深度学习的小目标检测研究对于如小人脸识别、遥感图像检测等任务的优化与提升都具有极为重要的意义。但由于图像中的小目标所占像素较少,分辨率低,包含的特征信息不明显,现有方法对小目标的检测效果并不理想。针对此问题,提出一种基于反馈的特征融合网络ReFPN用于YOLOv4算法,两次利用骨干网络提取的原始特征层,加强小目标特征信息,对其进行更精确的位置回归。同时提出混合注意力机制Co-AM充分提取小目标的细节特征信息,抑制无效特征,进一步提高小目标的检测精度。实验结果表明,此文提出的方法使YOLOv4算法在MS COCO数据集上平均精度AP提高了1.9%,小目标平均精度APS提高了3.3%,检测效果优于现有小目标检测算法,证明了此文提出方法的有效性。  相似文献   

8.
复杂条件下特殊目标的精确检测是增强特定场景态势生成和预测能力的关键因素。目前的技术不能克服航拍视频中出现的烟雾和遮挡干扰、目标高度变化、尺度不一等问题。因此,提出一个多特征交叉融合及跨层级联的航拍特殊目标检测算法(YOLOv5-MFLC)。针对实际特殊目标保密性高、航拍图像资源匮乏的问题,构建了一个基于真实场景的航拍特殊目标数据集,并采用随机拼接和随机提取嵌入的方法进行数据增强以提高目标多样性和泛化性;针对复杂背景干扰问题,构建了多特征交叉融合注意力机制,增强了目标特征的可用信息;针对航拍图像中目标多尺度问题,设计了跨层级联多尺度特征融合金字塔,提高了跨尺度目标的检测准确率。实验结果表明,与现有的先进检测模型相比,所提算法的检测准确率有较大提升,算法平均准确率可达到81.0%,相比于原始网络提升了5.2%,特别是,在更小的目标类别“person”中达到了55.9%,提升了9.4%,进一步表明了所提改进算法对小目标检测的有用性。同时,所提算法的检测速率可以达56 frame/s,能够有效地实现实际复杂场景特殊目标的准确、快速检测,对特殊目标的识别具有一定的指导意义。  相似文献   

9.
遥感图像存在背景复杂、目标尺度差异大且密集分布等不足,为提高现有算法的检测效果提出联合多尺度与注意力机制的遥感图像目标检测算法. 改进空洞空间金字塔池化模块,增大不同尺寸图像的感受野;提出注意力模块用于学习特征图通道信息和空间位置信息,提升算法对复杂背景下遥感图像目标区域的特征提取能力;引入加权双向特征金字塔网络结构与主干网结合来增进多层次特征的融合;使用基于距离的非极大值抑制方法进行后处理,改善检测框易重叠的问题. 在DIOR和NWPUVHR-10数据集上的实验结果表明:所提算法的平均精度均值mAP分别达到71.6%和91.6%,相比于主流的YOLOv5s算法分别提升了2.9%和1.5%. 所提算法对复杂遥感图像取得了更好的检测效果.  相似文献   

10.
针对内河港口背景复杂、类间尺度差异大和小目标实例多的特点,提出基于多头自注意力机制(MHSA)和YOLO网络的船舶目标检测算法(MHSA-YOLO).在特征提取过程中,基于MHSA设计并行的自注意力残差模块(PARM),以弱化复杂背景信息干扰并强化船舶目标特征信息;在特征融合过程中,开发简化的双向特征金字塔结构,以强化特征信息的融合与表征能力.在Seaships数据集上的实验结果表明,与其他先进的目标检测方法相比,MHSA-YOLO拥有较好的学习能力,在检测精度方面取得97.59%的平均均值精度,MHSA-YOLO对复杂背景船舶目标和小尺寸目标的检测更有效.基于自制数据集的实验结果表明,MHSA-YOLO的泛化能力强.  相似文献   

11.
针对现有的协同显著性检测算法在多显著目标复杂场景下表现不佳的问题,提出了一种基于高效通道注意力和特征融合的协同显著性检测算法。首先,检测算法利用预训练的深度卷积神经网络对场景进行多尺度特征的提取,结合边缘显著信息设计了显著性语义特征提取模块,以避免全卷积神经网络导致边缘信息的缺失;其次,通过内积基本原理得到组内图片间的关联性信息并根据其关联程度进行自适应加权,结合高效通道注意力层设计了协同特征提取算法;最后,为了将各级高层语义特征经过协同显著性特征提取之后的结果与浅层次的特征进行融合,并实现对预测结果进行多分支同步监督,设计了基于高效通道注意力的特征融合模块。通过对3个经典的数据集进行测试,并与6种现有的协同显著检测算法进行对比,结果表明本文所提算法提高了复杂场景中图像的协同显著性检测的精度以及边缘信息的丰富程度,并具有更优的协同显著性信息检测性能;通过消融实验进一步验证了所提设计算法各个模块的有效性和必要性。  相似文献   

12.
基于视觉图像的船舶目标检测中由于图像背景复杂,无关干扰较多,导致船舶目标检测的难度增大。并且多类别船舶检测数据集现有数量较少且存在样本不均衡的问题使得船舶目标检测性能较低。针对复杂背景干扰检测,本文通过引入SimAM注意力机制对YOLOv3模型进行改进,利用该机制加强船舶目标在提取特征中的权重并抑制背景干扰权重,从而提升模型检测性能;同时,采用强实时数据增强以改善样本尺度分布不均衡的问题,结合迁移学习提升在样本数量受限情况下的船舶检测精度。提取特征的可视化结果显示改进模型对无关背景特征干扰进行了抑制,增强了模型对于船舶特征的提取能力。在SeaShips数据集上,提出的改进模型在不引入额外可学习参数的情况下mAP.5、mAP.75分别达到了96.93%、71.49%,检测速度达到了66 frame/s,在检测精度与运行效率方面保持了均衡。与Saliency-aware CNN、eYOLOv3相比更有效地优化了目标特征,使得mAP.5分别提高了9.53%、9.19%。改进模型在新加坡海事数据集上在船舶类型目标检测的mAP.5达到了81.81%,验证了模型具有较好的泛化能力。  相似文献   

13.
模型的效率在计算机视觉中变得越来越重要.本文通过研究用于火焰检测的神经网络结构,提出了几个关键的优化方案,以提高模型效率和检测效果.第一,提出一种由多卷积组合结构构建的主干网络(FIRE-Net),它能高效地从多个尺度上提取丰富的火焰特征;第二,提出一种改进的加权双向特征金字塔网络(BiFPN-mini)以快速地实现多尺度特征融合;第三,提出一种新的注意力机制(FIRE-Attention),让检测器对火焰特征更敏感.基于上述优化,本文开发出了一种全新的火焰检测器FIRE-DET,它在硬件资源有限的条件下能够取得比现有基于深度学习的火焰检测方法更高的检测效率.FIRE-DET模型在自建数据集上进行训练后,最终对火焰检测的准确率和帧率分别达到97%和85 FPS.实验结果表明,与主流算法相比,本文火焰检测模型检测性能更优.本文为解决火焰探测问题提供了一个更通用的解决方案.  相似文献   

14.
针对现有应用于目标检测的知识蒸馏方法难以利用目标周围上下文区域的特征信息,提出适用于目标检测的上下文感知知识蒸馏网络(CAKD Net)方法.该方法能充分利用被检测目标的上下文信息,同时沿空间域和通道域进行信息感知,消除教师网络和学生网络的差异. 该方法包括基于上下文感知的区域提纯模块(CARM)和自适应通道注意力模块(ACAM). CARM利用上下文信息,自适应生成显著性区域的细粒度掩膜,准确消除教师网络和学生网络各自特征响应在该区域的差异;ACAM引入空间?通道注意力机制,进一步优化目标函数,提高学生网络的性能. 实验结果表明,所提方法对模型检测精确率提升超过2.9%.  相似文献   

15.
基于区域建议网络构建一种特征金字塔多尺度网络结构,并结合全卷积操作完成微小目标与类别无关目标的检测. 为了提升图像中微小目标的检测精度,构建基于侧链接融合的3层金字塔结构网络,充分利用语义级别比较低的图像卷积特征. 为了提高类别无关的图像目标检测鲁棒性,提出特定的非极大值抑制算法,在重叠目标过滤时消除冗余目标窗口,并对目标窗口进行位置精修. 在PASCAL VOC 2007、PASCAL VOC 2012以及古代绘画数据集上的实验结果表明:所提算法对于微小目标、多尺度目标检测及种类无关的目标检测的检测精度高于已有算法.  相似文献   

16.
弱光环境导致图像采集设备拍摄的照片呈现出对比度低、亮度较暗、目标物难以分辨等特点。为了改善图像质量,提出了一种融合注意力引导的多尺度低照度图像增强方法。首先,构建密集残差网络作为多尺度特征提取器,用于提取低照度图像中不同尺度的特征图;其次,利用改进的RefineNet对提取出的不同尺度的特征图进行融合,以便充分利用图像中的特征信息;同时,在网络中引入注意力机制,基于边缘检测结果生成注意力图,并与损失函数相结合来引导网络进行训练,在不增加网络推理负担的同时,增强隐藏在黑暗中的细节信息;最后,实验分别选用合成图像和SID(See-in-the-Dark)数据集进行训练与测试。相较于对比算法,峰值信噪比(PSNR)和结构相似性(SSIM)分别平均提高了约0.79 dB和0.119。结果表明,所提方法能有效提高亮度和对比度,恢复图像边缘细节,主观视觉效果得到提升。  相似文献   

17.
将高阶分形特征用于雷达信号的分析,提取出用于区分目标和杂波的新分形特征-缝隙特性,分析了海杂波与目标回波的缝隙特征曲线,并结合模糊数学的有关理论进行了海杂波与目标回波的缝隙特征曲线,并结合模糊数学的有关理论进行了海杂波背景下的目标检测。仿真结果表明:利用缝隙特征进行了雷达目标的检测,可以取得较分维值检测更高的准确率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号