首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 137 毫秒
1.
社团结构作为复杂网络的拓扑特性之一具有重要的理论和实践意义。提出一种基于节点依赖度和相似社团融合的社团结构发现算法,首先根据依赖度和相似度的定义将整个网络划分成若干个平均集聚系数较大的局部网络,构成网络的基础骨架社团;然后根据连接度的定义不断将社团边缘的节点和小社团吸收到相应的骨架网络中去,直到所有节点都得到准确的社团划分。算法在Zachary空手道俱乐部网络和海豚社会网络中进行了社团划分实验,并与GN算法和Newman快速算法进行了比较,结果表明该算法可以有效地划分社团边缘的模糊节点,社团划分结果具有较高的准确度。  相似文献   

2.
微博话题检测是当前研究的热点,提出一种基于复杂网络重叠社团发现的微博话题检测方法。该方法对一段时间内的微博数据进行预处理,在分词后,根据词性以及词的时域分布抽取出主题词,在相关度高的主题词之间构造边得到复杂网络。引入社团独立模块度的概念,并通过社团独立模块度最大化模型发现重叠社团,把每个社团看成一个微博话题。重叠社团发现的方法可以解决由一个或多个主题词属于多个话题引起的话题检测准确率低的问题。实验结果证明了该方法在微博话题检测中的有效性。  相似文献   

3.
社团结构是复杂网络的一项基本特性,对复杂网络中社团结构特别是重叠社团结构的检测,是复杂网络理论研究的一项重要且充满挑战的课题.对当前常用的重叠社团检测算法进行了分析和归纳,阐述每类算法特点,并介绍用于评价算法性能的一些基准图,对复杂网络重叠社团检测领域未来的研究方向提出了一些思考和建议.  相似文献   

4.
为了能够快速有效地发现复杂网络中的局部社团,提出一种基于节点内聚系数的局部社团发现算法。该算法选取最大度节点作为起始社团,不断搜索其邻居节点,将满足条件的节点不断加入起始社团从而形成新的社团。在不同规模的真实网络数据集和人工合成数据集上进行实验,并与其他三种局部社团发现算法进行社团划分效果的对比。实验结果表明,该算法能够在较短的运行时间内保持较高模块度来识别复杂网络中的局部社团结构,更适合于大规模复杂网络的社团结构挖掘。  相似文献   

5.
社团发现方法能够用来挖掘网络中隐藏的聚簇结构信息,对复杂网络结构与功能的分析具有重要意义.近些年来,随着网络数据的爆炸式增长,网络演化的多样性,涌现出了大量能够处理不同场景的社团发现方法和框架.为了深入了解社团发现领域的研究现状和发展趋势,对复杂网络中的社团发现算法进行综述.首先,对这些算法进行了分类;其次,详细介绍了每一类算法,并进行了分析和对比;之后,介绍了一些常用的评价指标,并阐述了社团发现的应用场景;最后,对该领域未来研究方向进行了展望.  相似文献   

6.
李慧嘉 《计算机科学》2014,41(9):125-131
现有的社团分析方法由于需要网络的全局信息,并且只能在单一的尺度上划分社团,因此不利于分析大规模的科技社会网络。提出了一种新颖的多尺度社团结构快速探测算法,其只利用网络的局域信息就可以模拟复杂网络中的多尺度的社团结构。该方法通过优化表示网络统计显著性的拓扑熵,来寻找有最佳统计意义的社团结构。为了得到具体的社团归属,算法只需利用局部信息的扩散来更新归属向量便能够收敛到局部极小值,因此具有较低的计算复杂性。它不需要指定具体的社团数量,便能够找到每个节点与具体社团的归属关系,从而能够自然地支持模糊社团的划分。理论分析和实验验证共同表明,该算法可以快速而准确地发现社会网络和生物网络中的各种功能社团。  相似文献   

7.
传统的重叠社区发现算法SLPA虽然具有时间复杂度和性能上的优势,但标签传播算法内在的随机策略使得算法结果并不稳定。针对SLPA的缺点,提出一种高效稳定的重叠社区发现算法L-SLPA。先对网络进行非重叠划分,减少不同标签分配的数量,同时加入边界节点的考虑进行剪枝,以提高运行速度。实验结果表明,相比于SLPA,该算法在降低运行时间和随机性的同时保证了结果的准确性。  相似文献   

8.
社区结构是复杂网络的重要属性之一, 有效挖掘出复杂网络中隐藏的社区结构具有重要的理论研究意义和广泛的应用前景。真实网络在一定程度上都表现为重叠的社区结构, 针对这一问题, 提出了一种基于三角形的重叠社区发现算法。通过判断两个节点与其共享邻居节点能否构成一个三角形来判断, 若能构成三角形, 则这两个节点属于同一社区。在计算机生成网络与真实网络上进行了实验, 都正确地识别出了社区结构以及重叠节点, 表明了此算法对于发现重叠社区结构的有效性和可行性。  相似文献   

9.
现有重叠社团发现算法大多直接从相邻连边的相似性出发,不能有效利用网络的多层连边信息。基于此,本文提出了一种基于连边距离矩阵的重叠社区发现算法LDM。首先结合连边-节点-连边随机游走模型,以实现多级连边信息的有效利用,其次借助模糊聚类方法,处理连边距离矩阵以获取连边社区,最后根据扩展模块度调整和优化重叠社区结构。在人工网络和真实网络上的实验结果表明,所提算法能够有效提高重叠社区发现算法的准确度。  相似文献   

10.
陆亿红  张振宁  杨雄 《计算机科学》2017,44(Z6):419-423
社团结构是复杂网络的一种很普遍且非常重要的拓扑特征,社团的发现有助于了解复杂网络的结构和功能。节点间相似度的评价指标对于社团发现的结果起着至关重要的作用,传统算法中使用的相似度指标存在着时间复杂度过高和不够精确的缺陷。为了弥补这两个缺陷,在信息传递理论的基础上将网络中的节点抽象成了多维数据集,结合传统聚类算法K-means提出了一种社团发现的新算法。基于Zachary Karate Club网络、Jazz Musician网络和Facebook网络的实验结果表明,该算法是高效且准确的。  相似文献   

11.
基于边聚类的社区发现算法以边为聚类对象,自然发现重叠社区,但也存在生成的社区集边界归属模糊、社区结构过度重叠等问题.基于此种情况,文中提出基于边密度聚类的重叠社区发现算法.首先,以边为研究对象,通过密度聚类检测连接紧密的核心边社区.然后,根据边界边归属策略将边界边划分到离它最近的核心边社区.针对孤立边,提出基于边的度与边的社区归属的孤立边处理策略,进一步处理未划分的孤立边,避免社区结构过度重叠的问题.最后,将边社区还原为节点社区,实现重叠社区的发现.在人工数据集和真实数据集上的实验表明,文中算法可以快速准确地检测复杂网络中的重叠社区.  相似文献   

12.
覆盖最优划分思想是将子集间重叠区域样本通过覆盖的合并和分割,使原来有交集的覆盖划分为无交集的类误差最小.文中将覆盖的最优划分思想引入社团发现中,提出基于覆盖最优划分的社团发现算法(CDA_OPC),将社团发现问题转化为求给定覆盖的最优划分问题.首先利用节点间邻域重叠关系构造覆盖,然后运用覆盖的最优划分概念,通过覆盖子集的合并与分割达到对覆盖的最优逼近,最后计算社团间的相似度,将相似度最大的社团两两合并,在多层次合并后最终形成多粒度的社团结构.在真实网络上的实验表明,CDA_OPC可以有效划分社团.  相似文献   

13.
网络中的社团结构检测问题已被广泛研究,但当网络中的噪音不断增加时,已有的社团结构检测方法的性能下降较快.为解决此问题,文中将成对约束形式的先验信息结合现有的社团结构检测方法,通过先验信息引导极值优化社团发现过程,提出基于网络结构极值优化的半监督社团划分方法.实验表明,相对已有方法,文中方法能提高社团划分准确度,且在噪音网络中也显示出较好性能.  相似文献   

14.
多标签传播算法具有接近线性的时间复杂度,但用于重叠社区发现时存在精度低、稳定性差的问题。文中基于重叠节点更可能出现在社区边缘的思想,提出基于节点层级与标签传播增益的重叠社区发现算法。该算法首先利用改进的基于节点中心度与社区分布约束的单标签传播方法发现非重叠社区,并在标签传播过程中利用局部信息同步计算节点中心度。然后根据节点中心度定义节点层级函数,标记节点在所属社区中的层级。最后基于节点间的标签传播增益,利用新的多标签更新规则,获得重叠社区结构。实验表明该算法能有效提高精度和稳定性。  相似文献   

15.
刘冰玉  王翠荣  王聪  苑迎 《计算机科学》2016,43(12):153-157
通过挖掘大数据来识别复杂社会网络上的社区,有利于对经济、政治、人口等方面的重要问题进行定量研究,社区的识别算法已经成为当前研究的热点问题。重点研究了重叠社区识别问题,提出了基于引力因子的加权复杂网络的重叠社区识别算法GWCR。该算法首先选取万有引力因子大的节点为中心节点,将节点与中心节点之间的引力因子作为衡量标准,并将节点归入社区引力因子大于某一阈值的社区,最后通过识别重叠节点来识别重叠社区。在3个真实网络数据集上的实验结果表明,与传统的重叠社区识别算法相比,GWCR算法划分的社区的模块度较高。  相似文献   

16.
处理海量级数据的有效途径之一是将算法分解为一系列互不依赖的任务,然后利用开源工具并行地执行算法。而在重叠社区发现算法中,基于局部拓展的方法在拓展阶段往往仅需要局部社区及其相应的邻居结点的信息,因而具备可并行执行的可能性。提出了一种可并行化执行的局部拓展算法,并借助开源工具Spark将其实现。算法分为4个阶段。首先,挑选出一组不相关的中心结点并使用其对应的局部网络作为种子;其次,通过删除本身连接不是很紧密的局部网络来过滤选出的种子;然后,采用一种批量式的拓展策略来拓展种子,即一次向局部社区中添加一批邻居结点或从社区中删除一批结点;最后,融合相似的社区。在人工生成的网络以及真实世界中的网络上的实验结果显示 ,所提算法既准确又高效。  相似文献   

17.
为了支撑电信运营商面向家庭群体的精确营销活动,解决在赋权的超大规模复杂网络中进行重叠性社团发现的难题,提出了基于核心边的局部贪婪扩展(CEBLGE)算法,以核心边作为初始社团种子,基于赋权的适应度函数进行两阶段扩展。算法中防止了畸形扩展,定义了边权相似度、赋权重叠模块性,优化了对过度相似社团的评价和处理方法,从而提升了重叠社团划分的质量。然后基于中国移动的电信大数据,利用逻辑回归算法构建了手机用户间的家庭成员关系模型,基于CEBLGE算法进行了家庭群体识别,并通过测试样本数据和实际营销活动检验了上述模型和算法的有效性。  相似文献   

18.
社区发现是复杂网络研究中的一项重要研究内容,基于节点相似度的凝聚方法是一种典型的社区发现方法。针对现有节点相似度计算方法中存在的不足,提出一种基于多层节点的节点相似度计算方法,该方法既可以有效地计算节点之间的相似度,又可以解决节点相似度相同时的节点合并选择问题。进一步基于这种改进的节点相似度计算方法和团体之间的连接紧密度度量准则构建社区发现模型,并在真实世界的网络上进行社区发现实验。与GN算法、Fast Newman算法和改进的标签传播算法的实验结果相比,该模型可以更加准确地找到各个社区的成员。  相似文献   

19.
重叠社区发现的两段策略   总被引:1,自引:0,他引:1  
复杂网络中的社区特别是重叠社区在信息传播与推荐、舆情控制、商业营销等领域中具有重要作用。在实际的网络中,由于有些节点天然地属于多个功能团体,重叠社区的挖掘越来越受到重视。提出了一种重叠社区挖掘的两段策略算法:初始社区抽取与社区合并。在社区抽取阶段,选择网络中最大度节点及其紧密的邻居节点作为初始社区,将与此初始社区联系紧密的节点也一并加入;在社区合并阶段,如果两个社区合并之后使得模块度增加,则合并这两个社区。用包括大规模网络在内的3个实际网络对所提算法进行了测试,结果表明,该算法可有效挖掘网络中的重叠社区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号