首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
考虑几何非线性项和阻尼的影响, 给出了四边简支的正交各向异性矩形层合板在两项横向简谐激励作用下的非线性振动微分方程, 利用伽辽金法导出了相应的达芬型非线性强迫振动方程。应用多尺度法对组合共振问题进行求解, 得到了系统在稳态运动下的幅频响应方程。基于李雅普诺夫稳定性理论, 得到了解的稳定性判定条件。通过数值算例, 分析了不同参数对系统组合共振及其分岔特性的影响。结果表明, 随着调谐参数、板厚度、阻尼系数以及激励力等参数的改变, 系统存在多幅值现象、滞后现象和跳跃现象, 出现不稳定解, 且在某些参数点处具有运动性态发生变化的分岔特性, 表现出较为复杂的动力学特性。   相似文献   

2.
The vibration responses of orthotropic plates on nonlinear elastic foundations are numerically modeled using the differential quadrature method. The differential quadrature technique is utilized to transform partial differential equations into a discrete eigenvalue problem. Numerical results and those from literature closely correspond to each other. Numerical results demonstrate that elastically restrained stiffness, plate aspect ratio and foundation stiffness significantly impact the dynamic behavior of orthotropic plates.  相似文献   

3.
This paper presents closed-form solution for buckling analysis of orthotropic plates using two variable refined plate theory. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Governing equations are derived from the principle of minimum total potential energy. The closed-form solutions of rectangular plates with two opposite edges simply supported and the other two edges having arbitrary boundary conditions are obtained by applying the state space approach to the Levy-type solution. Comparison studies are performed to verify the validity of the present results. The effects of boundary condition, loading condition, and variations of modulus ratio, aspect ratio, and thickness ratio on the critical buckling load of orthotropic plates are investigated and discussed in detail.  相似文献   

4.
A two-dimensional finite element model is presented to perform the linear static analysis of laminated orthotropic composite plates based on a refined higher order shear deformation theory. The theory accounts for parabolic distributions of transverse shear stresses and requires no shear correction factors. A finite element program is developed using serendipity element with seven degrees of freedom per node. The present solutions are compared with those obtained using three-dimensional elasticity theory and those obtained by other researchers. The theory accurately predicts displacements and transverse shear stresses compared to previously developed theories for thick plates and are very close to three-dimensional elasticity solutions. The effects of transverse shear deformation, material anisotropy, aspect ratio, fiber orientation and lamination sequence on transverse shear stresses are investigated. The error in values of transverse shear stresses decreases as the number of lamina increases, for a plate of same thickness. An increase in degree of anisotropy results in lower values of deflection in the plate. For cross-ply plate an increase in anisotropy results in an increase in effective stress whereas for angle-ply plate the effect is almost negligible. Through thickness variation of transverse shear stresses are independent of anisotropy. The maximum effective stress increases exponentially at lower values of anisotropy and reaches to an asymptotic value at higher values. The stacking sequence has a significant effect on the transverse deflections and shear stress. Rectangular plates experience less effective, in-plane and transverse shear stresses compared to square plates.  相似文献   

5.
A new higher-order theory for the analysis of laminated orthotropic plates and shells subject to both mechanical and thermal loads is developed. Using the variational approach the system of governing differential equations and corresponding boundary conditions are derived. Two refined models of the stress and strain state are considered, their application and accuracy are discussed. The analytical solution is obtained for plates and shells with the Navier boundary conditions on the side surfaces. The results of calculations are given and compared with an exact three-dimensional solution available in the literature. The influence of the laminated structure upon the exactness of results and the characteristics of stress–strain state is studied and discussed.  相似文献   

6.
Thermal buckling behavior of composite laminated plates   总被引:1,自引:0,他引:1  
Thermal buckling behavior of composite laminated plates was studied by making the use of finite element method. The thermal buckling mode shapes of cross-ply and angle-ply laminates with various E1/E2 ratios, aspect ratios, fiber angle, stacking sequence and boundary condition were studied in detail. The results indicate that the high E1/E2 and α2/α1 ratios of AS4/3501-6 and T 300/5208 laminates produce higher bending rigidity along the fiber direction and higher in-plane compressive force in a direction perpendicular to the fiber direction. Therefore, the higher thermal buckling mode shapes are formed. The thermal buckling mode that composite laminated plate will buckle into is mainly dependent on the E1/E2 ratio, α2/α1 ratio, fiber orientation and aspect ratio of the plate.  相似文献   

7.
A semi-analytical finite element for laminated composite plates   总被引:2,自引:0,他引:2  
H. Y. Sheng  J. Q. Ye   《Composite Structures》2002,57(1-4):117-123
This paper presents a semi-analytical finite element solution for laminated composite plates. The method is based on a mixed variational principle that involves both displacements and stresses. Finite element meshes are only used in the plane of plate, while the through thickness distributions of displacements and stresses are obtained using the method of state equations. Numerical results show that the rate of convergence of the new method is fast and the solutions can be very close to corresponding exact three-dimensional ones. The use of a recursive formulation of the state equations leads to an algebra equation system, from which solution are sought, whose dimension is independent of the numbers of layers of the plate considered.  相似文献   

8.
A finite element model is developed to study the behavior of stiffened laminated plates under transverse loadings. Transverse shear flexibility is incorporated in both beam and plate displacement fields. A laminated plate element with 45 degrees of freedom is used in conjunction with a laminated beam element having 12 degrees of freedom for the bending analysis of eccentrically-stiffened laminated plates. The validity of the formulation is demonstrated by comparing with the available solutions in the literature. The numerical results are presented for eccentrically-stiffened layered plates having various boundary conditions and with stiffeners varying in number.  相似文献   

9.
粘弹性复合材料层合板壳的动力稳定性分析   总被引:1,自引:1,他引:1  
分析面内周期激励下粘弹性层合平板以及轴向周期荷载作用下粘弹性层合圆柱壳的动力稳定性。设粘弹性复合材料服从Boltzmann积分型本构关系,其松弛模量由Prony—Dirichlet级数表示,基于薄板与薄壳理论,分别得到对称正交铺设层合板与层合圆柱壳的微分-积分型动力学方程,并应用谐波平衡法直接求解,忽略积分运算所产生的衰减项,导出确定动力不稳定区域边界的特征方程。分析结果表明,主要动力不稳定区域的缩小与材料的粘性参数以及结构横向振动的基频密切相关。  相似文献   

10.
Solution of the buckling problem for the CCFF orthotropic plate subjected to in-plane pure bending is presented. The two parallel clamped edges of the plate are loaded by linearly distributed in-plane loads statically equivalent to the in-plane bending moments. The problem is solved using method of lines for partial differential equations and Galerkin’s method. The buckling problems are solved for isotropic, orthotropic and multilayered CFRP composite plates with various aspect ratios. Results of calculations of critical loads are compared with those based on finite-element modelling and analyses. The comparisons demonstrate efficiency of the proposed approach to the buckling analysis of composite CCFF plates with various dimensional and stiffness parameters.  相似文献   

11.
This paper analyses the influence of different sets of edge-boundary conditions on the dynamics of freely vibrating isotropic and cross-ply multilayer laminated rectangular plates. The analysis is carried out within the frame of the full three-dimensional theory of elasticity through a formulation which is based on assumed displacements only; this formulation presents its relevant objectives in a unified manner, regardless of the nature of the stacking patterns of the laminated plates (isotropic, single layers or multi-layers). The analytical and/or numerical performance of the formulation is compared to those few results achievable through the exact three-dimensional theory and/or to those few existing results achieved by other researchers through alternative formulations. Convergence analyses are carried out on eigenvalues, displacement and stress fields in order to describe the capability of the formulation when compared to the exact three-dimensional results. The analysis reveals an interesting dependence on the edge-boundary conditions and highlights the need to carry out deeper investigations even though certain classical boundary conditions are taken into account through the most modern electronic computers.  相似文献   

12.
Abstract

The free vibration analysis of orthotropic composite laminates is investigated by using the partial hybrid plate element. The Hellinger‐Reissner principle is modified by adding kinetic energy. The through thickness effect is properly predicted since the transverse shear stress fields are assumed in the hybrid stress version. The natural frequencies are therefore accurately predicted. Apparently, the present study is more accurate than the displacement‐based higher‐order plate element.  相似文献   

13.
In this study, free vibration of laminated skew plates was investigated. Discrete singular convolution (DSC) method is used for numerical solution of vibration problems. The straight‐sided quadrilateral domain is mapped into a square domain in the computational space using a four‐node element by using the geometric transformation. Typical results are presented for different geometric parameters and boundary conditions. It is concluded from the results that the skew angle have considerable influence on the variations of the frequencies with fibre orientation angle and number of layers in the laminate. The results obtained by DSC method are compared with those obtained by analytical and numerical approaches. It is shown that reasonable accurate results are obtained. Present work also indicates that the method of DSC is a promising and potential approach for computational mechanics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
This study is concerned with bending of moderately thick rectangular laminated plates with clamped edges. The governing equations, based on Reissner first-order shear deformation plate theory; in terms of deflection and rotations of the plate include a system of three second-order, partial differential equations (PDEs). Application of extended Kantorovich method (EKM) to the system of partial differential equations reduces the governing equations to a double set of three second-order ordinary differential equations in the variables x and y. These sets of equations were then solved in an iterative manner until convergence was achieved. Normally three to four iterations are enough to get the final results with desired accuracy. It is demonstrated that, unlike other weighted residual methods, in the extended Kantorovich method initial guesses to start iterations are arbitrary and not even necessary to satisfy the boundary conditions. Results of this study also reveal that the convergence of the EKM is rapid and the method is an efficient way to solve system of PDEs of the same type. To compare the results of this study, the problem was also analyzed using commercial finite element software, ANSYS. Results show reasonably good agreement with the finite element analysis.  相似文献   

15.
A load increment procedure has been presented to integrate with the finite strip method for the post‐buckling analysis of laminated plates when subjected to uniform end shortening. In‐plane loads are introduced to reflect the end shortening effect. The Newton–Raphson procedure is implemented to attend a solution that satisfies the equilibrium condition and at the same time meets the loading requirements. Error associated with loading condition is minimised by adjusting the load factor to preserve the rate of convergence. The enhanced capability can be easily incorporated into the context of both classical and shear deformation plate theories. A range of application has been described. Convergence test and numerical results are presented for isotropic plate and laminates with general lay‐up arrangement. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
This article presents the buckling analysis of laminated composite stiffened plates subjected to partial in-plane edge loading. The finite element method is used to carry out the analysis. The eight-noded isoparametric degenerated shell element with C0 continuity and first-order shear deformation and a compatible three-noded curved beam element are used to model the plate skin and the stiffeners, respectively. The eigen value analysis is carried out to track the buckling load. The convergence study is performed for some specific problems and the results are compared with the available results in the literature. It is observed that the convergence of results is very fast for this finite element model. Effect of different parameters like orientation of fibers, number of layers, and loading types are considered in the present investigation. It is also observed that all these parameters have significant effect on the buckling response of the composite stiffened plate.  相似文献   

17.
A super finite element method that exhibits coarse-mesh accuracy is used to predict the transient response of laminated composite plates and cylindrical shells subjected to non-penetrating impact by projectiles. The governing equations are based on the classical theories of thin laminated plates and shells taking into account the von Karman kinematics assumptions for moderately large deflections. A non-linear Hertzian-type contact law accounting for curvatures of the colliding bodies is adopted to calculate the impact force . The theoretical basis of the present finite element model is verified by analysing impact-loaded laminated composite plate and shell structures that have previously been studied through analytical or other numerical procedures. The predictive capability of the present numerical approach is successfully demonstrated through comparisons between experimentally-measured and computed force-time histories for impact of carbon fibre-reinforced plastic (CFRP) plates. The current computational model offers a relatively simple and efficient means of predicting the structural impact response of laminated composite plates and shells.  相似文献   

18.
A boundary continuous displacement based Fourier series solution to the boundary-value problem of free vibration of an arbitrarily laminated thin rectangular plate is presented. This powerful approach is employed to solve a system of three highly coupled partial differential equations arising from the Kirchhoff hypothesis as applied to an anisotropic laminate, with the SS2-type simply supported boundary conditions prescribed at all four edges. The accuracy of the computed eigenvalues (natural frequencies) is ascertained by studying the convergence characteristics of the lowest seven natural frequencies, and also by comparison with the computed degenerate FEM (finite element methods) results. Other important numerical results presented include variation of the response quantities of interest with geometric and material parameters, such as fiber orientation angle and longitudinal-to-transverse modulus ratio.  相似文献   

19.
为了应用弹性力学中的Hamilton 正则方程研究压电材料的灵敏度系数问题,基于压电材料的H-R(Hellinger-Reissner) 变分原理,简要地导出Hamilton正则方程算子表达式,建立了四边简支板静力学控制方程。根据灵敏度定义,在静力学控制方程的基础上联立灵敏度控制方程,得到了增维的齐次压电材料静力响应和灵敏度系数混合控制方程。应用该方程可以同时求得压电层合板的力学、电学参量及其灵敏度。该算法过程简单、运算效率和稳定性好。数值算例结果与有限差分法的结果比较表明本文方法切实有效。   相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号