首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
湖南某赤铁矿石铁品位约27%,大部分铁矿物嵌布粒度在5 μm左右。对该矿石进行煤基直接还原-弱磁选试验研究,主要考察了还原温度、还原时间对还原效果的影响以及磨矿细度、磁场强度对弱磁选效果的影响。试验结果表明:将原矿压团后与烟煤(煤与矿的质量比为2∶1)在1 150 ℃下还原焙烧100 min,所得还原矿的金属化率为93.41%;还原矿磨至-0.043 mm占90.22%后在63.68 kA/m的磁场强度下经1次弱磁选,可获得铁品位为75.71%、金属化率为92.11%、铁回收率为91.12%的铁精矿。  相似文献   

2.
梅山铁尾矿强磁再选粗精矿深度还原试验   总被引:1,自引:0,他引:1  
杨龙  韩跃新  袁致涛  高鹏 《金属矿山》2012,41(7):148-150
由于梅山铁矿石中弱磁性铁矿物含量很高,导致梅山尾矿的铁品位较高。梅山铁矿选矿厂对该尾矿进行了强磁再选,获得了铁品位为31.80%的再选粗精矿。为获得合格的铁产品,东北大学对该再选粗精矿进行了深度还原工艺技术条件研究,结果表明,在还原温度为1 275 ℃,还原时间为60 min,料层厚度为30 mm,配碳系数为2.0,煤粉粒度为-2.0 mm情况下进行深度还原,金属化率为89.20%的还原物料经1段弱磁选可获得铁品位为80.05%、回收率为98.03%的弱磁选铁粉。  相似文献   

3.
以碳作为还原剂,对某镜铁矿0~15 mm粒级粉矿进行了回转窑磁化焙烧-磁选试验研究。结果表明,还原剂与镜铁矿配比为2.5%,在焙烧温度820 ℃、焙烧时间30 min条件下经回转窑磁化焙烧,焙烧矿磨至-0.048 mm粒级占80%,在磁场强度120 kA/m条件下弱磁选获得铁精矿,其中给矿粒级0~0.5 mm所得弱磁选精矿平均全铁品位57.27%、平均铁回收率83.24%; 0.5~1.0 mm粒级所得弱磁选精矿平均全铁品位57.55%、平均铁回收率82.92%; 给矿粒级1~5 mm所得弱磁选精矿平均全铁品位57.58%、平均铁回收率89.31%,给矿粒级5~15 mm所得弱磁选精矿全铁品位58.36%、铁回收率84.40%; 全粒级弱磁选精矿平均全铁品位57.70%、平均回收率84.97%。  相似文献   

4.
马钢罗河矿选矿厂铁尾矿TFe品位高达13%以上,具有一定回收价值。采用预富集—悬浮磁化焙烧—磁选工艺对罗河矿尾矿开展试验研究。结果表明:试样经一阶段磁选—磨矿—二阶段磁选,磁选混合精矿1粗2精2扫浮选流程分选后,获得的预富集精矿铁品位为29.17%、铁回收率57.91%、硫含量0.402%;预富集精矿在焙烧温度540℃、还原时间30 min、还原气体浓度60%、气体流量600 mL/min、还原剂H2与CO体积比为3∶1、焙烧产品磨矿细度-0.023 mm占95%、磁选场强159.2 kA/m的条件下,最终可获得精矿铁品位64.30%、回收率45.90%、S含量0.110%的技术指标。磁选精矿中主要铁矿物为磁铁矿,且磁性铁矿物中铁的分布率高达98.26%,脉石矿物主要为石英,含量为6.32%。悬浮磁化焙烧—磁选技术有效地回收了尾矿中的铁元素,为马钢罗河矿尾矿的开发利用提供了技术支撑。  相似文献   

5.
以某菱铁矿石为原料,采用直接还原-弱磁选工艺,研究了焙烧温度、还原时间、碳铁质量比对还原焙烧产品金属化率的影响,以及磨矿细度、磁场强度对弱磁选指标的影响。结果表明:在还原焙烧温度为1 050 ℃,还原时间为100 min,碳铁质量比为2.3的条件下,得到铁金属化率为90.88%的还原焙烧产品;还原焙烧产品在磨矿细度为-0.037 mm占79.60%,磁场强度为79.62 kA/m下,得到铁品位为92.40%,铁回收率为96.60%的还原铁粉,可直接作为炼钢原料。  相似文献   

6.
为探究不同粒度(-13 mm、-8 mm、-2 mm)的鄂西高磷鲕状赤铁矿直接还原焙焙烧同步脱磷效果, 进行了直接还原焙烧-磁选试验研究, 考察了焙烧时间、焙烧温度、还原剂用量以及脱磷剂用量对直接还原效果的影响。结果表明: 直接还原焙烧较大粒度的高磷鲕状赤铁矿是可行的, 随着粒度的增大, 铁的品位并没有下降, 但是回收率有所下降, 而且达到最佳条件所需的温度提高、焙烧时间延长、还原剂用量减少、脱磷剂A的用量增加、脱磷剂B的用量变化不大。-13 mm粒度原矿直接还原焙烧-磁选在最佳条件下可得到铁品位93.39%, 铁回收率83.58%, 磷含量0.094%的直接还原铁。  相似文献   

7.
针对西北某铁矿矿物组成、嵌布关系复杂及嵌布粒度较细的特点,进行了选矿试验研究。试验结果表明:原矿在焙烧温度700℃、焙烧时间50 min条件下,进行中性焙烧后,再经磨矿-弱磁选-弱磁选尾矿强磁选流程处理后,可获得铁品位为66.85%、回收率为45.67%的弱磁选精矿和铁品位为62.80%、回收率为38.98%的强磁选精矿,综合精矿铁品位为64.92%、回收率为84.65%。  相似文献   

8.
以褐煤、烟煤、无烟煤和兰炭作为还原剂, 对低品位红土镍矿进行了直接还原焙烧-磁选实验研究。结果表明, 还原剂种类、粒度和用量对还原过程有较大影响, 其中褐煤作为还原剂时还原效果最好。最佳实验条件为: 红土镍矿原料粒度-0.075 mm, 还原剂(褐煤)粒度为-0.25 mm、用量4%, 焙烧温度1 200 ℃, 焙烧时间90 min, 焙烧后焙砂磨细至-0.05 mm, 在磁场强度0.3 T下粗选再在0.1 T下精选, 可得到镍品位3.2%、镍回收率82%、铁品位65%、铁回收率69%的镍铁精矿。  相似文献   

9.
高磷鲕状赤铁矿动态磁化焙烧-磁选试验研究   总被引:3,自引:3,他引:0  
对鄂西高磷鲕状赤铁矿进行了动态磁化焙烧-磁选试验研究。针对两种不同粒度的原矿, 确定了动态气-煤混用磁化焙烧的工艺条件: 焙烧温度800 ℃, 混配煤粉5%, 煤气流量0.9 L/min, 转炉倾角1.8°, 转炉转速0.6 r/min(焙烧时间50 min)。矿石中赤铁矿可有效转变为磁铁矿, 焙烧过程中无粘结现象。焙烧产品采用阶段磨矿-阶段磁选流程, 原料粒度0~2 mm时, 精矿铁品位58.95%, 铁回收率87.26%; 原料粒度0~6 mm时, 精矿铁品位58.69%, 铁回收率89.50%。  相似文献   

10.
鞍山某强磁精矿中菱铁矿含量较高,难以实现有效分选。为此,采用流态化焙烧反应器,在传统还原磁化焙烧的基础上,开展了低温预氧化—超低温还原磁化焙烧—弱磁选试验研究。结果表明:①试样 TFe品位为29.47%,主要脉石成分SiO2含量为52.81%,有害杂质S、P含量较低;铁主要以赤铁矿的形式存在,分布率为79.37%,其次为碳酸铁11.71%、磁性铁3.46%。②在500 ℃和550 ℃的条件下,以工业发生炉煤气 为还原气,直接还原磁化焙烧过程中生成弱磁性浮氏体,难以实现弱磁选铁矿物相的完全磁性转化。③采用低温预氧化—超低温还原磁化焙烧可获得稳定的完全强磁性转化,适宜的流态化磁化焙烧参数为550 ℃预氧 化2.5 min,再450 ℃还原焙烧10 min。④焙烧矿在磨矿细度为-30 μm占92.60%、磁场强度为79.60 kA/m的条件下,可获得精矿全铁品位大于63%、全铁回收率大于84%的良好指标。⑤产品XRD分析、BSE矿相检测、EDS 能谱检测结果显示试验过程中未见弱磁性赤褐铁矿和浮氏体存在,预氧化矿保持了原试样中含铁物相边界的初始形态,菱铁矿矿物相中类质同象替换的Mg、Ca元素在焙烧过程也未发生迁移,磨矿和弱磁选过程也无法 将其分离。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号