首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A compact dual-band printed wire antenna for applications in wireless communications is presented. An additional shorted parasitic element to the F-shaped wire antenna is introduced to achieve a dual-band operation. As an example, a new antenna was designed and fabricated for wireless local area network applications that operate in the 2.4 and 5.2/5.8 GHz bands. The prototyped antenna offered two separate measured impedance bandwidths of 700 (2.35-3.05 GHz) and 2150 MHz (3.95-6.1 GHz), for a return loss less than -10 dB. A measured antenna gain of 1.78-1.9 dBi was observed across the lower band, whereas a measured antenna gain of 3.9-4.4 dBi was observed across the upper band. The measured radiation patterns were stable across the passband  相似文献   

2.
A compact wideband printed slot antenna, suitable for wireless local area network (WLAN) and satisfying the worldwide interoperability for microwave access (WiMAX) applications, is proposed here. The antenna is microstrip-fed and its structure is based on Koch fractal geometry where the resonance frequency of a conventional triangular slot antenna is lowered by applying Koch iterations. The antenna size inclusive of the ground plane is compact and has a wide operating bandwidth. The proposed second iteration Koch slot antenna operates from 2.33 to 6.19 GHz covering the 2.4/5.2/5.8 GHz WLAN bands and 2.5/3.5/5.5 GHz WiMAX bands. The antenna exhibits omnidirectional radiation coverage with a gain better than 2.0 dBi in the entire operating band. Design equations for the proposed antenna are developed and their validity is confirmed on different substrates and for different slot sizes.  相似文献   

3.
In this paper, the design and performance analysis of an Inkjet-printed metamaterial loaded monopole antenna is presented for wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications. The proposed metamaterial structure consists of two layers, one is rectangular tuning fork-shaped antenna, and another layer is an inkjet-printed metamaterial superstate. The metamaterial layer is designed using four split-ring resonators (SRR) with an H-shaped inner structure to achieve negative-index metamaterial properties. The metamaterial structure is fabricated on low-cost photo paper substrate material using a conductive ink-based inkjet printing technique, which achieved dual negative refractive index bands of 2.25–4.25 GHz and 4.3–4.6 GHz. The antenna is designed using a rectangular tuning fork structure to operate at WLAN and WiMAX bands. The antenna is printed on 30 × 39 × 1.27 mm3 Rogers RO3010 substrate, which shows wide impedance bandwidth of 0.75 GHz (2.2 to 2.95 GHz) with 2 dB realized gain at 2.4 GHz. After integrating metamaterial structure, the impedance bandwidth becomes 1.25 GHz (2.33 to 3.58 GHz) with 2.6 dB realized gain at 2.4 GHz. The antenna bandwidth and gain have been increased using developed quad SRR based metasurface by 500 MHz and 0.6 dBi respectively. Moreover, the proposed quad SRR loaded antenna can be used for 2.4 GHz WLAN bands and 2.5 GHz WiMAX applications. The contribution of this work is to develop a cost-effective inject printed metamaterial to enhance the impedance bandwidth and realized the gain of a WLAN/WiMAX antenna.  相似文献   

4.
A triple-band Bluetooth (BT) and wireless local area network (WLAN) monopole antenna has been proposed based on concepts called capacitive loading/de-loading and inductive loading/de-loading. It has been demonstrated that BT and triple-band WLAN operations, including the BT 2.4 GHz (2.4-2.484 GHz), the WLAN IEEE 802.11 2.4 GHz (2.4-2.484 GHz), 5.2 GHz WLAN (5.15-5.35 GHz) and WLAN 5.8 GHz (5.725- 5.825 GHz) can be achieved by using the monopole antenna with an overall size 8.0 x 11.5 x 1.0 mm3, which is one of the most compact WLAN monopole antennas covering the three frequency bands.  相似文献   

5.
本文设计了一种T型枝节解耦的双频MIMO天线.两个工作频段分别覆盖WLAN频率2.45 GHz/5.2 GHz/5.8 GHz.低频谐振单元为倒F天线,通过在低频枝节上增加短截线,用以产生高频谐振,实现双频工作.将天线单元沿水平方向对称放置形成二单元的MIMO天线,并采用在两个天线单元之间添加T型枝节的方法进行解耦.对...  相似文献   

6.
A simple and compact coplanar waveguide (CPW)-fed ultra-wideband (UWB) monopole-like slot antenna is presented. The proposed antenna comprises a monopole-like slot and a CPW fork-shaped feeding structure, which is etched onto an FR4 printed circuit board (PCB) with an overall size of 26 mm x 29 mm x 1.5 mm. The simulation and experiment show that the proposed antenna achieves good impedance matching, consistent gain, stable radiation patterns and consistent group delay over an operating bandwidth of 2.7?12.4 GHz (128.5%). Furthermore, through adding two more grounded open-circuited stubs, the proposed antenna design features band-notched characteristic in the band of 5?6 GHz while maintaining the desirable performance over lower/upper UWB bands of 3.1?4.85 GHz/6.2?9.7 GHz.  相似文献   

7.
A compact dual-band antenna structure for automotive and aerospace applications is discussed. A bow tie dual-band electromagnetic band gap (EBG) element geometry is presented that has a reduced cell dimension compared to the wavelength yet has sufficient bandwidth for mobile communication applications. The EBG was combined with a printed planar monopole to produce a structure 8 mm thick. The return loss and radiation patterns gave satisfactory performance at two frequency bands with bandwidths of 11% at 1700 MHz and 7% at 2600 MHz. There was suppression of the back radiation at both bands of 5 dB or better even for the small 3 times 3 element EBG used and the antenna was platform tolerant.  相似文献   

8.
The performance of a triple-frequency meandered-strip monopole antenna for wireless application is presented. The proposed antenna comprises of a microstrip-fed monopole with an additional meandered strip and a ground plane with three protrudent strips on the opposite side of the substrate. By adding these shorted parasitic strips to this monopole, good impedance matching for multi-band application is obtained. Tuning effects of the additional shorted strips to the different resonant modes were examined and prototype of the proposed antenna had been constructed and experimentally studied. The measured results explore a broadband triple-frequency operation covering the required bandwidths of the PCS-1900/UMTS-2100 and the 2.4/5.2/5.8 GHz WLAN standards, a near-directive radiation pattern and a good antenna gain for this design.  相似文献   

9.
A broadband comb-shaped monopole antenna is proposed. The antenna has dimensions of 19 mm x 12 mm. The measured results show good agreement with the numerical prediction, and broadband operation with 10 dB impedance bandwidth of 44.75% (1.7-2.68 GHz). The antenna is built on one side of a flexible-printed circuit board (PCB) dielectric substrate. Folded and rolled antenna structures, which are transformed by the proposed planar antenna structure, are presented. Each antenna has a broadband impedance bandwidth that covers the PCS, UMTS, WiBro, WLAN and SDMB bands. Also, omni-directional radiation patterns over the operating bands have been obtained. The proposed antennas are suitable for mobile communication applications requiring a small antenna.  相似文献   

10.
In this paper, the design and experimental evaluation of a hexagonal-shaped coplanar waveguide (CPW)-feed frequency reconfigurable antenna is presented using flame retardant (FR)-4 substrate with size of 37 × 35 × 1.6 mm3. The antenna is made tunable to three different modes through the status of two pin diodes to operate in four distinct frequency bands, i.e., 2.45 GHz wireless fidelity (Wi-Fi) in MODE 1, 3.3 GHz (5G sub-6 GHz band) in MODE 2, 2.1 GHz (3G Long Term Evolution (LTE)-advanced) and 3.50 GHz Worldwide Interoperability for Microwave Access (WiMAX) in MODE 3. The optimization through simulation modeling shows that the proposed antenna can provide adequate gain (1.44~2.2 dB), sufficient bandwidth (200~920 MHz) and high radiation efficiency (80%~95%) in the four resonating frequency bands. Voltage standing wave ratio (VSWR) < 1.5 is achieved for all bands with properly matched characteristics of the antenna. To validate the simulation results, fabrication of the proposed optimized design is performed, and experimental analysis is found to be in a considerable amount of agreement. Due to its reasonably small size and support of multiple frequency bands operation, the proposed antenna can support portable devices for handheld 5G and Wireless LAN (WLAN) applications.  相似文献   

11.
A dual-band metallic antenna with the appearance of a button on a pair of jeans for use with wearable computer networks, emergency rescue scenarios and future wireless medical applications is presented. The design operates at 2.4 GHz WLAN and the HiperLAN/2 bands and a parametric study is given to aid the design process together with measurement and simulation of the structure on a body. A study of transmission between pairs of on-body antennas is presented to give insight into on-body propagating line of sight and non-line of sight channels. A term `body gain? is defined to quantify how the body attenuates the channel.  相似文献   

12.
设计了一种应用于WLAN的具有低交叉极化和高隔离度的双极化天线.天线由3层功能层和2层介质基板间隔层叠而成.3层功能层分别为1个方形辐射贴片,2个带有发夹谐振器的馈电网络和1个刻蚀H形缝隙的接地板.发夹谐振器和辐射贴片构成一个二阶滤波天线用以展宽天线的带宽.通过在接地板上蚀刻H形缝隙降低了天线端口间的耦合电流,改善了天...  相似文献   

13.
Abstract

The experimental and simulated results for the proposed antenna are investigated in this article. Moreover, a novel broadband design of a circularly polarized (CP) single square slot antenna fed by a single coplanar waveguide is presented. By appropriately choosing the circumference of the square‐loop, the length of the protruded strip, and the gap, this proposed antenna thus owns good CP radiation and good impedance match simultaneously at the frequency of 2.45 GHz. This proposed antenna has the fundamental resonant frequency of 2.5 GHz with the minimum return loss of ‐39.9 dB. Furthermore, its impedance bandwidth is 460 MHz or 18.4% and 3‐dB axial‐ratio (AR) bandwidth is 360 MHz or 14.4% at 2.5 GHz.  相似文献   

14.
A compact single feed dual-band electronically tunable microstrip antenna for operation in GSM/DCS-1800 system is presented. The antenna consists of two resonant elements designed separately and integrated while preserving their designed bands. The two bands are separately tuned using two biasing control circuits. A significant size reduction and bandwidth selection are achieved using a varactor diode as a voltage control capacitance. The design and implementation is carried out on a foam substrate of thickness 2.44 mm and with a dielectric constant 1.2. Simulation and experimental results show that the required bandwidth of the GSM/DCS-1800 system can be easily covered with voltage changes from 1 to 3 V, which is suitable for mobile hand phones.  相似文献   

15.
This article introduces a novel, ultrawideband (UWB) planar monopole antenna printed on Roger RT/5880 substrate in a compact size for small Internet of Things (IoT) applications. The total electrical dimensions of the proposed compact UWB antenna are 0.19 λo × 0.215 λo × 0.0196 λo with the overall physical sizes of 15 mm × 17 mm × 1.548 mm at the lower resonance frequency of 3.8 GHz. The planar monopole antenna is fed through the linearly tapered microstrip line on a partially structured ground plane to achieve optimum impedance matching for UWB operation. The proposed compact UWB antenna has an operation bandwidth of 9.53 GHz from 3.026 GHz up to 12.556 GHz at −10 dB return loss with a fractional bandwidth (FBW) of about 122%. The numerically computed and experimentally measured results agree well in between. A detailed time-domain analysis is additionally accomplished to verify the radiation efficiency of the proposed antenna design for the ultra-wideband signal propagation. The fabricated prototype of a compact UWB antenna exhibits an omnidirectional radiation pattern with the low peak measured gain required of 2.55 dBi at 10 GHz and promising radiation efficiency of 90%. The proposed compact planar antenna has technical potential to be utilized in UWB and IoT applications.  相似文献   

16.
A square slot antenna fed by a coplanar waveguide for dual-band multistandard applications is presented. Printed on the back of the square slot is a composite patch formed by an annular metal ring inscribed by a circular patch. Appropriate design of the composite back-patch resulted in five resonant bands, the first (last) two of which were combined to form a lower (upper) operating band. The ratio of the two operating band centre frequencies can be tuned larger than 2.5. A pair of notches was embedded in the annular metal ring to further broaden the lower (upper) operating band up to a fractional bandwidth of 37% (20%). The measured results indicate that the proposed antenna can cover the frequency bands of the following wireless communication standards: digital communication system, personal communication services, universal mobile telecommunications system and 2.4/5-GHz wireless local-area networks.  相似文献   

17.
This paper presents a compact Multiple Input Multiple Output (MIMO) antenna with WLAN band notch for Ultra-Wideband (UWB) applications. The antenna is designed on 0.8 mm thick low-cost FR-4 substrate having a compact size of 22 mm × 30 mm. The proposed antenna comprises of two monopole patches on the top layer of substrate while having a shared ground on its bottom layer. The mutual coupling between adjacent patches has been reduced by using a novel stub with shared ground structure. The stub consists of complementary rectangular slots that disturb the surface current direction and thus result in reducing mutual coupling between two ports. A slot is etched in the radiating patch for WLAN band notch. The slot is used to suppress frequencies ranging from 5.1 to 5.9 GHz. The results show that the proposed antenna has a very good impedance bandwidth of |S11| < −10 dB within the frequency band from 3.1–14 GHz. A low mutual coupling of less than −23 dB is achieved within the entire UWB band. Furthermore, the antenna has a peak gain of 5.8 dB, low ECC < 0.002 and high Diversity Gain (DG > 9.98).  相似文献   

18.
In this paper, we present a novel modified printed monopole antenna (PMA) for ultra-wideband (UWB) applications. The proposed antenna consists of a truncated ground plane and radiating patch with two tapered steps, which provides wideband behaviour and relatively good matching. Moreover, the effects of a modified trapezoid-shaped slot inserted in the radiating patch, on the impedance matching and radiation behaviour is investigated. The antenna has a small area of 14 x 20 mm2 and offers an impedance bandwidth as high as 100% at a centre frequency of 7.45 GHz for S11 < -10 dB, which has a frequency bandwidth increment of 18% with respect to the previous similar antenna. Simulated and experimental results obtained for this antenna show that it exhibits good radiation behaviour within the UWB frequency range.  相似文献   

19.
Due to rapid growth in wireless communication technology, higher bandwidth requirement for advance telecommunication systems, capable of operating on two or higher bands with higher channel capacities and minimum distortion losses is desired. In this paper, a compact Ultra-Wideband (UWB) V-shaped monopole antenna is presented. UWB response is achieved by modifying the ground plane with Chichen Itzia inspired rectangular staircase shape. The proposed V-shaped is designed by incorporating a rectangle, and an inverted isosceles triangle using FR4 substrate. The size of the antenna is 25 mm×26 mm×1.6 mm. The proposed V-shaped monopole antenna produces bandwidth response of 3 GHz Industrial, Scientific, and Medical (ISM), Worldwide Interoperability for Microwave Access (WiMAX), (IEEE 802.11/HIPERLAN band, 5G sub 6 GHz) which with an additional square cut amplified the bandwidth response up to 8 GHz ranging from 3.1 GHz to 10.6 GHz attaining UWB defined by Federal Communications Commission (FCC) with a maximum gain of 3.83 dB. The antenna is designed in Ansys HFSS. Results for key performance parameters of the antenna are presented. The measured results are in good agreement with the simulated results. Due to flat gain, uniform group delay, omni directional radiation pattern characteristics and well-matched impedance, the proposed antenna is suitable for WiMAX, ISM and heterogeneous wireless systems.  相似文献   

20.
Wideband microstrip antennas with sandwich substrate   总被引:1,自引:0,他引:1  
A broadband microstrip antenna with low?high?low (sandwich) dielectric constant substrate combination using a microstrip line-via feed is presented for ultra-wideband applications. The proposed antenna consists of three dielectric substrates; low dielectric constant substrates that contain the microstrip feed line as well as parasitic patches and a high dielectric constant substrate that contains the driven patch. To achieve a large impedance bandwidth, parasitic patches and microstrip line-via combination feed to the driven patch in the multilayered microstrip antenna are used. The proposed antenna designed, fabricated and measured on the sandwich substrate. The antenna has measured 10 dB return loss bandwidth of 46.9% and directive gain .5.2 dBi at boresight across the impedance bandwidth. The total height of antenna is 5.77 mm or 0.077λ at 4 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号