首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
An asymmetrical interfacial microstructure was observed at both top and bottom interfaces of Cu/Sn-58Bi/Cu solder joints after isothermal aging at 120°C for different times. The asymmetrical interfacial microstructure resulted from asymmetrical Bi segregation, which was attributed to the density difference between Bi and Sn atoms. Bi atoms were driven to the bottom solder/Cu interface by gravity during the liquid soldering procedure since Bi atoms are more massive than Sn atoms. With increasing aging time, Bi accumulated at the bottom Cu3Sn/Cu interface and the Bi segregation enhanced Cu6Sn5 intermetallic compound growth, blocked Sn transport to the Cu3Sn intermetallic compound, and facilitated growth of the Cu6Sn5, based on the measured thicknesses of intermetallic compounds (including Cu6Sn5 and Cu3Sn) at both bottom and top interfaces for Cu/Sn-58Bi/Cu sandwich joints under the same aging process.  相似文献   

2.
Solders of nominal 95Pb-5Sn and 60Sn-40Pb were used to join Cu plates. The effect of ternary additions of In, Ag, Sb, and Bi to the near-eutectic solder were also investigated. Bulk solder and interfacial joint microstructures were characterized for each solder alloy. The solder joints were strained to failure in tension; joint strength and failure mode were determined. 95Pb-5Sn/Cu and 60Sn-40Pb/Cu specimens were tested both as-processed and after reflow. 95Pb-5Sn/Cu as-processed and reflow specimens failed in tension in a ductile mode. Voids initiated at β-Sn precipitates in the as-processed specimens and at the Cu3Sn intermetallic in the reflow specimens. 60Sn-40Pb/Cu failed transgranularly through the Cu6Sn5 intermetallic in both the as-processed and reflow conditions. The joint tensile strength of the reflow specimens was approximately half that of the as-processed specimens for both the high-Pb and near-eutectic alloys. The Cu6Sn{5} intermetallic dominated the tensile failure mode of the near-eutectic solder/Cu joints. The fracture path of the near-eutectic alloys with ternary additions depended on the presence of Cu6Sn5 rods in the solder within the Cu plates. Specimens with ternary additions of In and Ag contained only interfacial intermetallics and exhibited interfacial failure at the Cu6Sn5. Joints manufactured with ternary additions of Sb and Bi contained rods of Cu6Sn5 within the solder. Tensile failure of the Sb and Bi specimens occurred through the solder at the Cu6Sn5 rods.  相似文献   

3.
Thermal annealing and electromigration (EM) tests were performed with Cu pillar/Sn bumps to understand the growth mechanism of intermetallic compounds (IMCs). Annealing tests were carried out at both 100°C and 150°C. At 150°C, EM tests were performed using a current density of 3.5 × 104 A/cm2. The electrical failure mechanism of the Cu pillar/Sn bumps was also investigated. Cu3Sn formed and grew at the Cu pillar/Cu6Sn5 interface with increasing annealing and current-stressing times. The growth mechanism of the total (Cu6Sn5 + Cu3Sn) IMC changed when the Sn phase in the Cu pillar/Sn bump was exhausted. The time required for complete consumption of the Sn phase was shorter during the EM test than in the annealing test. Both IMC growth and phase transition from Cu6Sn5 to Cu3Sn had little impact on the electrical resistance of the whole interconnect system during current stressing. Electrical open failure in the Al interconnect near the chip-side Cu pillar edge implies that the Cu pillar/Sn bump has excellent electrical reliability compared with the conventional solder bump.  相似文献   

4.
The creep-rupture lives of Sn3.8Ag0.7Cu and Sn3.8Ag0.7Cu0.03Ce lead-free solder joints for electronic packaging were investigated, respectively. And the relationship between creep behavior and intermetallic compound (IMC: Ag3Sn, Cu6Sn5, CeSn3) particles in SnAgCu/SnAgCuCe solder joints has been obtained. Meanwhile, rare earth Ce concentration gradient and retardation effect of Ce on the IMC layer have been observed at the solder/Cu interface. Moreover, aging reaction of Sn and Cu, and the effect mechanism of rare earth Ce on two IMCs (Cu6Sn5 and Cu3Sn) are reported.  相似文献   

5.
The interfacial interaction between Cu substrates and Sn-3.5Ag-0.7Cu-xSb (x = 0, 0.2, 0.5, 0.8, 1.0, 1.5, and 2.0) solder alloys has been investigated under different isothermal aging temperatures of 100°C, 150°C, and 190°C. Scanning electron microscopy (SEM) was used to measure the thickness of the intermetallic compound (IMC) layer and observe the microstructural evolution of the solder joints. The IMC phases were identified by energy-dispersive x-ray spectroscopy (EDX) and x-ray diffractometry (XRD). The growth of both the Cu6Sn5 and Cu3Sn IMC layers at the interface between the Cu substrate and the solder fits a power-law relationship with the exponent ranging from 0.42 to 0.83, which suggests that the IMC growth is primarily controlled by diffusion but may also be influenced by interface reactions. The activation energies and interdiffusion coefficients of the IMC formation of seven solder alloys were determined. The addition of Sb has a strong influence on the growth of the Cu6Sn5 layer, but very little influence on the formation of the Cu3Sn IMC phase. The thickness of the Cu3Sn layer rapidly increases with aging time and temperature, whereas the thickness of the Cu6Sn5 layer increases slowly. This is probably due to the formation of Cu3Sn at the interface between two IMC phases, which occurs with consumption of Cu6Sn5. Adding antimony to Sn-3.5Ag-0.7Cu solder can evidently increase the activation energy of Cu6Sn5 IMC formation, reduce the atomic diffusion rate, and thus inhibit excessive growth of Cu6Sn5 IMCs. This study suggests that grain boundary pinning is one of the most important mechanisms for inhibiting the growth of Cu6Sn5 IMCs in such solder joints when Sb is added.  相似文献   

6.
Within electronic products, solder joints with common interfacial structure of Cu/IMCs/Sn-based solders/IMCs/Cu cannot be used under high temperature for relatively low melting points of Sn-based solders (200–300 °C). However, there is a trend for solder joints to service under high temperature because of the objective for achieving multi-functionality of electronic products.With the purpose of ensuring that solder joints can service under high temperature, full Cu3Sn solder joints with the interfacial structure of Cu/Cu3Sn/Cu can be a substitute due to the high melting point of Cu3Sn (676 °C). In this investigation, soldering process parameters were optimized systematically in order to obtain such joints. Further, interfacial microstructure evolution during soldering was analyzed. The soldering temperature of 260 °C, the soldering pressure of 1 N and the soldering time of 5 h were found to be the optimal parameter combination. During soldering of 260 °C and 1 N, the Cu6Sn5 precipitated first in a planar shape at Cu-Sn interfaces, which was followed by the appearance of planar Cu3Sn between Cu and Cu6Sn5. Then, the Cu6Sn5 at opposite sides continued to grow with a transition from a planar shape to a scallop-like shape until residual Sn was consumed totally. Meanwhile, the Cu3Sn grew with a round-trip shift from a planar shape to a wave-like shape until the full Cu3Sn solder joint was eventually formed at 5 h. The detailed reasons for the shape transformation in both Cu6Sn5 and Cu3Sn during soldering were given. Afterwards, a microstructure evolution model for Cu-Sn-Cu sandwich structure during soldering was proposed. Besides, it was found that no void appeared in the interfacial region during the entire soldering process, and a discuss about what led to the formation of void-free joints was conducted.  相似文献   

7.
Cu6Sn5 and Cu3Sn are common intermetallic compounds (IMCs) found in Sn–Ag–Cu (SAC) lead-free solder joints with OSP pad finish. People typically attributed the brittle failure to excessive growth of IMCs at the interface between the solder joint and the copper pad. However, the respective role of Cu6Sn5 and Cu3Sn played in the interfacial fracture still remains unclear. In the present study, various amounts of Ni were doped in the Sn–Cu based solder. The different effects of Ni concentration on the growth rate of (Cu, Ni)6Sn5/Cu6Sn5 and Cu3Sn were characterized and compared. The results of characterization were used to evaluate different growth rates of (Cu, Ni)6Sn5 and Cu3Sn under thermal aging. The thicknesses of (Cu, Ni)6Sn5/Cu6Sn5 and Cu3Sn after different thermal aging periods were measured. High speed ball pull/shear tests were also performed. The correlation between interfacial fracture strength and IMC layer thicknesses was established.  相似文献   

8.
Chip to chip bonding techniques using Cu bumps capped with thin solder layers have been frequently applied to 3D chip stacking technology. We studied the effect of joint microstructure on shear strength. Joints were formed by joining Sn/Cu bumps on a Si die and Sn/Cu layers on another Si die at 245–330°C using a thermo-compression bonder. Three different types of microstructures were fabricated in the joints by controlling the bonding temperature and time, (1) a Sn-rich phase with a Cu6Sn5 phase at the Cu interfaces, (2) a Cu6Sn5 phase in the interior with a Cu3Sn phase at the Cu interfaces, and (3) one single Cu3Sn phase throughout the whole joint. The joint having a single Cu3Sn phase had the highest shear strength. Specimens were aged up to 2000 h at 150°C and 180°C. During aging, the microstructures of all joints were transformed in a single Cu3Sn phase. The shear strength of the joints was very sensitive to the formation of Cu3Sn and microvoids. Microvoids formed in the solder joints with a Cu6Sn5 phase with and without a Sn-rich phase during aging and decreased the shear strength of the joints. Conversely, aging did not induce the formation of microvoids in the joints which originally had only a Cu3Sn phase and the shear strength was not decreased.  相似文献   

9.
The microstructural evolution of Cu/Sn-Ag (~5 μm)/Cu Cu-bump-on-line (CuBOL) joints during isothermal annealing at 180°C was examined using a field-emission scanning electron microscope equipped with an electron backscatter diffraction (EBSD) system. Cu6Sn5 and Cu3Sn were the two key intermetallic compound (IMC) species that appeared in the CuBOL joints. After annealing for 24 h (= t), the solder had completely converted to Cu-Sn IMCs, forming an “IMC” joint with Cu/Cu3Sn/Cu6Sn5/Cu3Sn/Cu structure. EBSD analyses indicated that the preferred orientation of the hexagonal Cu6Sn5 (η) was $ (2\bar{1}\bar{1}3) $ , while the preferred orientation was (100) for the monoclinic Cu6Sn5 structure (η′). Upon increasing t to 72 h, Cu6Sn5 entirely transformed into Cu3Sn, and the IMC joint became Cu/Cu3Sn/Cu accordingly. Interestingly, the grain size and crystallographic orientation of Cu3Sn displayed location dependence. Detailed EBSD analyses in combination with transmission electron microscopy on Cu3Sn were performed in the present study. This research offers better understanding of crystallographic details, including crystal structure, grain size, and orientation, for Cu6Sn5 and Cu3Sn in CuBOL joints after various annealing times.  相似文献   

10.
The thermal reliability of Sn-3Ag-0.5Cu/Au/Pd(P)/Cu solder joints was evaluated in this study. After reflow and subsequent solid-state aging (180°C), the reaction product species at the interface included Cu6Sn5 [or (Cu,Pd)6Sn5] and Cu3Sn, and their growth was strongly dependent on the Pd(P) thickness, δ Pd(P). As δ Pd(P) increased, the growth of Cu6Sn5 was significantly enhanced, while that of Cu3Sn was suppressed. Computer coupling of phase diagrams and thermochemistry (CALPHAD) analysis showed that minor incorporation of Pd (~2?at.%) into the Cu6Sn5 phase decreased the Gibbs free energy of Cu6Sn5 from ?7339?J/mol to ?9191?J/mol. This effect might enhance Sn diffusion in Cu6Sn5 but diminish Cu diffusion in Cu3Sn, thereby facilitating the growth of Cu6Sn5 but retarding that of Cu3Sn. High-speed ball shear (HSBS) test results showed that the mechanical properties of the solder joints were slightly enhanced by an increase in δ Pd(P). These findings suggest that direct deposition of Au/Pd(P) bilayers over the Cu pads can effectively modify the mechanical reliability of solder joints.  相似文献   

11.
In general, formation and growth of intermetallic compounds (IMCs) play a major role in the reliability of the solder joint in electronics packaging and assembly. The formation of Cu-Sn or Ni-Sn IMCs have been observed at the interface of Sn-rich solders reacted with Cu or Ni substrates. In this study, a nanoindentation technique was employed to investigate nanohardness and reduced elastic moduli of Cu6Sn5, Cu3Sn, and Ni3Sn4 IMCs in the solder joints. The Sn-3.5Ag and Sn-37Pb solder pastes were placed on a Cu/Ti/Si substrate and Ni foil then annealed at 240°C to fabricate solder joints. In Sn-3.5Ag joints, the magnitude of the hardness of the IMCs was in the order Ni3Sn4>Cu6Sn5>Cu3Sn, and the elastic moduli of Cu6Sn5, Cu3Sn, and Ni3Sn4 were 125 GPa, 136 GPa, and 142 GPa, respectively. In addition, the elastic modulus of the Cu6Sn5 IMC in the Sn-37Pb joint was similar to that for the bulk Cu6Sn5 specimen but less than that in the Sn-3.5Ag joint. This might be attributed to the strengthening effect of the dissolved Ag atoms in the Cu6Sn5 IMC to enhance the elastic modulus in the Sn-3.5Ag/Cu joint.  相似文献   

12.
The growth behavior of interfacial intermetallic compounds (IMCs) of SnAgCu/Cu soldered joints was investigated during the reflow process, isothermal aging, and thermal cycling with a focus on the influence of these parameters on growth kinetics. The SnAgCu/Cu soldered joints were isothermally aged at 125°C, 150°C, and 175°C while the thermal cycling was performed within the temperature ranges from −25°C to 125°C and −40°C to 125°C. It was observed that a Cu6Sn5 layer formed, followed by rapid coarsening at the solder/Cu interface during reflowing. The grain size of the interfacial Cu6Sn5 was found to increase with aging time, and the morphology evolved from scallop-like to needle-like to rod-like and finally to particles. The rod-like Ag3Sn phase was formed on the solder side in front of the previously formed Cu6Sn5 layer. However, when subject to an increase of the aging time, the Cu3Sn phase was formed at the interface of the Cu6Sn5 layer and Cu substrate. The IMC growth rate increased with aging temperature for isothermally aged joints. During thermal cycling, the thickness of the IMC layer was found to increase with the number of thermal cycles, although the growth rate was slower than that for isothermal aging. The dwell time at the high-temperature end of the thermal cycles was found to significantly influence the growth rate of the IMCs. The growth of the IMCs, for both isothermal aging and thermal cycling, was found to be Arrhenius with aging temperature, and the corresponding diffusion factor and activation energy were obtained by data fitting. The tensile strength of the soldered joints decreased with increasing aging time. Consequently, the fracture site of the soldered joints migrated from the solder matrix to the interfacial Cu6Sn5 layer. Finally, the shear strength of the joints was found to decrease with both an increase in the number of thermal cycles and a decrease in the dwell temperature at the low end of the thermal cycle.  相似文献   

13.
This work investigated the microstructure evolution of Cu-cored Sn solder joints under high temperature and high current density. The Cu6Sn5 phase formed at both the Cu core/Sn interface and Cu wire/Sn interface right after reflow and grew with increasing annealing time, while the Cu3Sn phase formed and grew at the Cu/Cu6Sn5 interfaces. Intermetallic compound (IMC) growth followed a linear relationship with the square root of annealing time due to a diffusion-controlled mechanism. Under high current density, the thickness of the interfacial IMCs of the Cu core/Sn interface at the cathode side increased and the Cu core/Sn interface at the anode side exhibited an irregular and serrated morphology with prolonged current stressing time. Finite-element simulation was carried out to obtain the distribution of current density in the solder joint. Since Cu has lower resistivity, the electrical current primarily selected the Cu core as its electrical path, resulting in current crowding at the Cu core and the region between the Cu core and Cu wire. Compared with the conventional solder joint, the electromigration (EM) lifetime of the Cu-cored solder joint was much longer.  相似文献   

14.
Cu6Sn5 and Cu3Sn intermetallic compounds are commonly found in the Sn-Cu bimetallic system. Due to the distinct resistivity of these two compounds, the electrical properties of Cu/Sn interfaces, e.g., solder joints on Cu metallization, may be impacted by the formation of Cu-Sn compounds. In this study, the kinetics of Sn-Cu compound formation was investigated by in-situ resistivity measurement, x-ray diffraction, and scanning electron microscopy (SEM). The interfacial reaction of the Cu-Sn bimetallic thin film specimen was monitored by the resistivity change of the specimen during thermal treatment. The activation energy of formation of Cu-Sn compounds was determined to be 0.97±0.07 eV. It is proposed that the Cu6Sn5 compound first forms at Sn/Cu interfaces and then reacts with Cu, forming the Cu3Sn compound at elevated temperatures during the thermal ramping process. The effect of thin film thickness on the sequential formation of Sn-Cu compounds is also discussed.  相似文献   

15.
Mechanical properties of intermetallic compound (IMC) phases in Pb-free solder joints were obtained using nanoindentation testing (NIT). The elastic modulus and hardness were determined for IMC phases associated with insitu FeSn particle reinforced and mechanically added, Cu particle-reinforced, composite solder joints. The IMC layers that formed around Cu particle reinforcement and at the Cu substrate/solder matrix interface were probed with NIT. Moduli and hardness values obtained by NIT revealed were noticeably higher for Cu-rich Cu3Sn than those of Cu6Sn5. The Ag3Sn platelets that formed during reflow were also examined for eutectic Sn-Ag solder column joints. The indentation modulus of Ag3Sn platelets was significantly lower than that of FeSn, SnCuNi, and CuSn IMCs. Indentation creep properties were assessed in localized microstructure regions of the as-cast, eutectic Sn-Ag solder. The stress exponent, n, associated with secondary creep differed widely depending on the microstructure feature probed by the indenter tip.  相似文献   

16.
Interdiffusion and interfacial reaction of 95Pb-5Sn solder bumps and 37Pb-63Sn presolder in flip-chip solder joints during high-temperature storage were studied. Reaction temperatures included 100°C, 130°C, 150°C, and 175°C. It was found that Cu6Sn5 and Cu3Sn formed on the board side and (Ni,Cu)3Sn4 formed on the chip side after 100 h of aging. After 2000 h of aging at 175°C, the Ni under-bump metallization (UBM) was exhausted. This caused the (Ni,Cu)3Sn4 layer at the chip-side interface to be gradually converted into (Cu0.6Ni0.4)6Sn5. It was also found that the consumption of the Ni UBM was faster than the case where eutectic Sn-Pb solder was used for the entire joint. Nevertheless, the consumption of the Cu on the substrate side was slower than the case where pure eutectic Sn-Pb solder was used for the entire joint.  相似文献   

17.
The effect of electromigration (EM) on the interfacial reaction in a line-type Cu/Sn/Ni-P/Al/Ni-P/Sn/Cu interconnect was investigated at 150°C under 5.0 × 103 A/cm2. When Cu atoms were under downwind diffusion, EM enhanced the cross-solder diffusion of Cu atoms to the opposite Ni-P/Sn (anode) interface compared with the aging case, resulting in the transformation of interfacial intermetallic compound (IMC) from Ni3Sn4 into (Cu,Ni)6Sn5. However, at the Sn/Cu (cathode) interface, the interfacial IMCs remained as Cu6Sn5 (containing less than 0.2 wt.% Ni) and Cu3Sn. When Ni atoms were under downwind diffusion, only a very small quantity of Ni atoms diffused to the opposite Cu/Sn (anode) interface and the interfacial IMCs remained as Cu6Sn5 (containing less than 0.6 wt.% Ni) and Cu3Sn. EM significantly accelerated the dissolution of Ni atoms from the Ni-P and the interfacial Ni3Sn4 compared with the aging case, resulting in fast growth of Ni3P and Ni2SnP, disappearance of interfacial Ni3Sn4, and congregation of large (Ni,Cu)3Sn4 particles in the Sn solder matrix. The growth kinetics of Ni3P and Ni2SnP were significantly accelerated after the interfacial Ni3Sn4 IMC completely dissolved into the solder, but still followed the t 1/2 law.  相似文献   

18.
Zn additions to Cu under bump metallurgy (UBM) in solder joints were the subject of this study. An alternative design was implemented to fabricate pure Sn as the solder and Cu-xZn (x = 15 wt.% and 30 wt.%) as the UBM to form the reaction couple. As the Zn content increased from 15 wt.% to 30 wt.% in the Sn/Cu-Zn system, growth of both Cu3Sn and Cu6Sn5 was suppressed. In addition, no Kirkendall voids were observed at the interface in either Sn/Cu-Zn couple during heat treatment. After 40-day aging, different multilayered phases of [Cu6Sn5/Cu3Sn/Cu(Zn)] and [Cu6Sn5/Cu(Zn,Sn)/CuZn] formed at the interface of [Sn/Cu-15Zn] and [Sn/Cu-30Zn] couples, respectively. The growth mechanism of intermetallic compounds (IMCs) during aging is discussed on the basis of the composition variation in the joint assembly with the aid of electron-microscopic characterization and the Sn-Cu-Zn ternary phase diagram. According to these analyses of interfacial morphology and IMC formation in the Sn/Cu-Zn system, Cu-Zn is a potential UBM for retarding Cu pad consumption in solder joints.  相似文献   

19.
The 0.2Co + 0.1Ni dual additives were used to dope a Sn-3.5Ag solder matrix to modify the alloy microstructure and the solder joint on an organic solderability preservative (OSP) Cu pad. The refined microstructure of the Sn-3.5Ag-0.2Co-0.1Ni solder alloy or the reduced β-Sn size was attributed to the depressed undercooling achieved by the Co-Ni addition. After soldering on the OSP Cu pad, a large Ag3Sn plate was formed at the Sn-3.5Ag/OSP solder joint, whereas it was absent at the Sn-3.5Ag-0.2Co-0.1Ni/OSP solder joints. With isothermal aging at 150°C, large Ag3Sn plates formed at the Sn-3.5Ag/OSP solder joint were still observed. A coarsened and dispersed Ag3Sn phase was found in the solder joints with Co-Ni additions as well. Compared to Cu6Sn5, the (Co,Ni)Sn2 intermetallic compound showed much lower microhardness values. However, (Co,Ni)Sn2 hardness was comparable to that of the Ag3Sn phase. Pull strength testing of Sn-3.5Ag-0.2Co-0.1Ni/OSP revealed slightly lower values than for Sn-3.5Ag/OSP during aging. Such results are thought be due to the phase transformation of (Co,Ni)Sn2 to (Cu,Co,Ni)6Sn5.  相似文献   

20.
The formation and growth of intermetallics in composite solder   总被引:5,自引:0,他引:5  
The formation and growth of intermetallics at the solder/substrate interface are factors affecting the solderability and reliability of electronic solder joints. This study was performed to better understand the diffusion behavior and microstructural evolution of Cu−Sn intermetallics at the composite solder/copper substrate interface for eutectic solder and solder alloys containing particle additions of Cu, Cu3Sn, Cu6Sn5, Ag, Au, and Ni. Annealing temperatures of 110 to 160°C were used with aging times of 0 to 64 days. The copper-containing composite solders generally formed thinner Cu6Sn5 layers, but thicker Cu3Sn layers than were formed by the eutectic solder alone. These copper-containing additions, therefore, resulted in increased activation energies for Cu6Sn5 formation and decreased activation energies for Cu3Sn formation as compared to the eutectic solder. The activation energy for Cu3Sn formation decreased relative to eutectic solder for silver and gold composite solders even though less Cu3Sn was formed at the substrate interface. Nickel and palladium drastically reduced the Cu3Sn thickness and increased the Cu6Sn5 thickness. However, the Cu6Sn5 contained a substantial volume fraction of voids close to the copper substrate. We propose two mechanisms to explain the effects of the copper-containing and silver particles on the kinetics of intermetallic formation. First, the particles act as tin-sinks which remove tin from the solder and decrease the amount of tin available for reaction at the solder/substrate interface. Second, the particles reduce the cross-sectional area available for tin diffusion, which also reduces the amount of tin available at the interface for reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号