首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cholinergic system is important for learning, memory, and responses to novel stimuli. Exposure to novel, but not familiar, tastes increases extracellular acetylcholine (ACh) levels in insular cortex (IC). To further examine whether cholinergic activation is a critical signal of taste novelty, in these studies carbachol, a direct cholinergic agonist, was infused into IC before conditioned taste aversion (CTA) training with a familiar taste. By mimicking the cholinergic activation generated by novel taste exposure, it was hypothesized that a familiar taste would be treated as novel and therefore a salient target for aversion learning. As predicted, rats infused with the agonist were able to acquire CTAs to familiar saccharin. Effects of carbachol infusion on patterns of neuronal activation during conditioned stimulus–unconditioned stimulus pairing were assessed using Fos-like immunoreactivity (FLI). Familiar taste–illness pairing following carbachol, but not vehicle, induced significant elevations of FLI in amygdala, a region with reciprocal connections to IC that is also important for CTA learning. These results support the view that IC ACh activity provides a critical signal of taste novelty that facilitates CTA acquisition. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

2.
Taste novelty can strongly modulate the speed and efficacy of taste aversion learning. Novel sweet tastes enhance c-Fos-like immunoreactivity (FLI) in the central amygdala and insular cortex. The present studies examined whether this neural correlate of novelty extends to different taste types by measuring FLI signals after exposure to novel and familiar polysaccharide (Polycose?) and salt (NaCl) tastes. Novel Polycose not only failed to elevate FLI expression in central amygdala and insular cortex, but also failed to induce stronger taste aversion learning than familiar Polycose. Novel NaCl, on the other hand, showed patterns of FLI activation and aversion learning similar to that of novel sweet tastes. Possible reasons for the resistance of Polycose to typical pre-exposure effects are discussed. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
4.
24 Long-Evans hooded rats lacking gustatory neocortex and 24 normal rats were familiarized to either hydrochloric acid or quinine hydrochloride solutions during free-drinking trials. Ss were subsequently trained to avoid either the familiar or the novel taste stimulus, using a balanced design, by pairing the to-be-associated taste with ip injections of apomorphine hydrochloride. Balanced, nonpaired presentations of the other taste solution and water were also presented. Normal Ss learned to avoid the novel taste more efficiently than the familiar taste. Ss with gustatory neocortex lesions did not differentiate novel from familiar tastes. They learned aversions to both in a manner highly similar to the aversion learning of familiar tastes by the normal group. Therefore, results demonstrate that Ss lacking gustatory neocortex displayed an associative deficiency only when they were trained on novel stimuli. This suggests that gustatory neocortex lesions disrupt the conditionability of taste stimuli by reducing or eliminating responses to taste novelty. This interpretation is supported by the absence of a "neophobic" response in the lesioned rats to the first presentation of a taste stimulus. (26 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

5.
The results in this article show that although electrolytic amygdala lesions disrupt learning of a conditioned taste aversion (CTA), ibotenic acid-induced, axon-sparing lesions of the amygdala do not. However, ibotenic acid lesions of the insular cortex do disrupt learning of a CTA. Electrolytic, but not ibotenic acid lesions of the amygdala, interrupt axons running between the insular (gustatory) cortex and the brainstem/hypothalamus. It is the destruction of these projections which appears to underlie CTA deficits after amygdala lesions. Other results revealed that ibotenic acid lesions of the insular cortex attenuated the reaction to the novel taste of saccharin in a familiar environment but failed to affect the ingestion of a novel food in a novel environment or passive avoidance learning. Conversely, ibotenic acid lesions of the amygdala did not affect the reaction to novel saccharin in a familiar environment but did impair both the reaction to novel food in a novel environment and passive avoidance learning. We conclude that the insular cortex is involved in reactions to the novelty and associative salience exclusively of taste stimuli, whereas the amygdala is probably more concerned with the reaction to more general aspects of novelty in the environment and in fear-motivated behavior. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
The present research addresses whether rats can express odor aversions to the odor of taste stimuli. In Experiment 1, saccharin or salt were either mixed in distilled water, so the rats could taste and smell them, or presented on disks attached to the tubes' metal spouts so the rats could only smell them. Aversions were established to taste stimuli under both conditions. The results of Experiment 2 indicate that conditioning was to the odor of the tastes when they were presented on disks in Experiment 1, hence both taste and odor aversions were established by means of "taste" stimuli. Taste aversion learning thus may more properly be termed flavor aversion learning, with flavor referring to both taste and odor components. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
Odor “sweetness” may arise from experiencing odors and tastes together, resulting in a flavor memory that is later reaccessed by the odor. Forming a flavor memory may be impaired if the taste and odor elements are apparent during exposure, suggesting that configural processing may underpin learning. Using a new procedure, participants made actual flavor discriminations for one odor–taste pair (e.g., Taste A vs. Odor X–Taste A) and mock discriminations for another (e.g., Odor Y–Taste B vs. Odor Y–Taste B). Participants, who were successful at detecting the actual flavor discriminations, demonstrated equal amounts of learning for both odor–taste pairings. These results suggest that although a capacity to discriminate flavor into its elements may be necessary to support learning, whether participants experience a configural or elemental flavor representation may not. (PsycINFO Database Record (c) 2011 APA, all rights reserved)  相似文献   

8.
Recent advances in neural mechanisms of taste are reviewed with special reference to neuroactive substances. In the first section, taste transduction mechanisms of basic tastes are explained in two groups, whether taste stimuli directly activate ion channels in the taste cell membrane or they bind to cell surface receptors coupled to intracellular signaling pathways. In the second section, putative transmitters and modulators from taste cells to afferent nerves are summarized. The candidates include acetylcholine, catecholamines, serotonin, amino acids and peptides. Studies favor serotonin as a possible neuromodulator in the taste bud. In the third section, the role of neuroactive substances in the central gustatory pathways is introduced. Excitatory and inhibitory amino acids (e.g., glutamate and GABA) and peptides (substance P and calcitonin gene-related peptide) are proved to play roles in transmission of taste information in both the brainstem relay and cortical gustatory area. In the fourth section, conditioned taste aversion is introduced as a model to study gustatory learning and memory. Pharmacobehavioral studies to examine the effects of glutamate receptor antagonists and protein kinase C inhibitors on the formation of conditioned taste aversion show that both glutamate and protein kinase C in the amygdala and cortical gustatory area play essential roles in taste aversion learning. Recent molecular and genetic approaches to disclose biological mechanisms of gustatory learning are also introduced. In the last section, behavioral and pharmacological approaches to elucidate palatability, taste pleasure, are described. Dopamine, benzodiazepine derivatives and opioid substances may play some roles in evaluation of palatability and motivation to ingest palatable edibles.  相似文献   

9.
Certain odors have tastelike qualities when sniffed. To the extent that these qualities are akin to real taste experiences, impairment in perception of odor-induced tastes should be accompanied by taste impairment, and vice versa. Twelve patients were selected with possible odor-induced taste impairments or general taste impairments via a screening test, along with a further 6 patients with a probable taste impairment (insular lesion). These 18 patients, along with 19 normal controls, completed a battery of odor, taste, visual control, and neuropsychological tests to assess impairments in odor-induced taste perception and general taste perception. Four patients had an odor-induced taste impairment and were also impaired on taste perception. A further analysis, using regression on the whole sample, indicated that taste impairments were associated with odor-induced taste abnormalities independent of other predictors. This pattern also held for the patient group alone. The insular patients also exhibited both taste and odor-induced taste impairments. This study is the first to demonstrate a relationship between impaired taste perception and the perception of odor-induced tastes and suggests that both may rely on certain common neural substrates. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

10.
Rats failed to acquire aversions to odor stimulus, which was followed 30 min later by an unconditioned stimulus (US). However, when the odor stimulus was accompanied by a taste stimulus, they acquired odor aversions as well as taste aversions. In this phenomenon, referred to as a taste-potentiated odor aversion, lesions of the amygdala disrupted both taste and odor aversions, whereas lesions of the parvicellular part of ventroposteromedial thalamic nucleus (VPMpc) or insular cortex (IC) disrupted taste aversion but attenuated only odor aversion. These results suggest that both taste and odor stimuli are associated with US in the amygdala and that taste inputs delivered to the amygdala through the IC and/or VPMpc play an important role in potentiation of odor aversion. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
The tastes of 100 mM sodium chloride (NaCl), 100 mM sucrose, and 1 mM quinine hydrochloride in mixtures were investigated in golden hamsters (Mesocricetus auratus) with a conditioned taste aversion (CTA) paradigm. CTAs, established in golden hamsters by injection of lithium chloride, were quantified as percent suppression of control 1-hr stimulus intake. CTAs for 10 of 15 stimulus pairs with common components symmetrically cross-generalized, suggesting that component qualities were recognized in binary and ternary mixtures. However, CTAs to quinine were hardly learned and were weakly expressed when quinine was mixed with NaCl, and generalizations from multiple to single stimuli were stronger than vice versa (i.e., asymmetric). The behaviors reflect peripheral inhibition and/or central mixture suppression. Nonetheless, components retain their distinct qualities in mixtures, suggesting that taste processing is analytic. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
Reports an error in "Effects of Central and Basolateral Amygdala Lesions on Conditioned Taste Aversion and Latent Inhibition" by Justin St. Andre and Steve Reilly (Behavioral Neuroscience, 2007[Feb], Vol 121[1], 90-99). Figure 4 on p. 96 (Results and Discussion, Experiment 2: Behavioral section) was incorrect. The correct figure is provided in the erratum. (The following abstract of the original article appeared in record 2007-02025-008.) The present study examined the effects of neurotoxic lesions of the central nucleus (CNA) and basolateral complex (BLA) of the amygdala on conditioned taste aversion (CTA) in a latent inhibition design. In Experiment 1, lesions of the CNA were found to have no affect on CTA acquisition regardless of whether the taste conditioned stimulus (CS) was novel or familiar. Lesions of the BLA, although having no influence on performance when the CS was familiar, retarded CTA acquisition when the CS was novel in Experiment 2. The pattern of results suggests that the CTA deficit in rats with BLA lesions may be a secondary consequence of a disruption of perceived stimulus novelty. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
Reports results of 8 experiments with a total of 327 male Sprague-Dawley rats. Lesions to the basolateral amygdala produced permanent impairment in Ss' ability to learn a taste aversion. When lesions were administered after Ss had already learned an aversion, there was complete loss of the aversion. Ss with amygdala lesions also had a diminished neophobic response when presented with a novel solution and showed a more generalized aversion to water after a sucrose-sickness trial. Whether a solution was novel or familiar affected the learning of an aversion for controls more than it did for Ss with amygdala lesions. Ss with amygdala damage also showed less sodium appetite than normals in response to desoxycorticosterone acetate injections. These results indicate that rats with amygdala lesions have deficits in recognizing the significance of stimuli. (49 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
The hypothesis that benzodiazepine-induced hyperphagia is due to a specific enhancement of the palatability of foods has been supported by previous 'taste reactivity' studies of affective (hedonic and aversive) reactions to taste palatability. Diazepam and chlordiazepoxide enhance hedonic reactions of rats (rhythmic tongue protrusions, etc.) to sweet tastes in a receptor-specific fashion. A role for brainstem circuits has been indicated by a previous demonstration of the persistence of the taste reactivity enhancement by diazepam after midbrain decerebration. The present study examined whether benzodiazepine brainstem receptors are the chief substrates for palatability enhancement even in intact brains. We compared the effectiveness of benzodiazepine microinjections to elicit feeding and enhance hedonic reactions when delivered into either the lateral ventricle (forebrain) or the fourth ventricle (brainstem) of rats. The results show diazepam is reliably more effective at eliciting feeding and enhancing positive hedonic reactions to oral sucrose when microinjections are made in the fourth ventricle than in the lateral ventricle. We conclude that brainstem neural systems containing benzodiazepine-GABA receptors are likely to be the chief substrates for benzodiazepine-induced palatability enhancement.  相似文献   

15.
Results of 3 experiments showed that infant rats (age 13-17 days) generalize conditioned taste aversions between alcohol and non-alcohol tastes such as a mixture of sucrose and quinine, apple cider vinegar, or coffee. Nonreinforced preexposure to those tastes reduced generalized aversions between them. Generalization between alcohol and sucrose-quinine was reduced not only after preexposure to both tastes, but also when only the nonconditioned taste was preexposed, whereas with alcohol and vinegar, both tastes had to be preexposed to obtain that effect. In no case was generalization reduced when only the to-be-conditioned taste was preexposed. Previous experience with alcohol alone, as well as with similar gustatory stimuli, may enhance subjects' ability to differentiate them during infantile stages in rats. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

16.
[Correction Notice: An erratum for this article was reported in Vol 121(6) of Behavioral Neuroscience (see record 2007-18058-034). Figure 4 on p. 96 (Results and Discussion, Experiment 2: Behavioral section) was incorrect. The correct figure is provided in the erratum.] The present study examined the effects of neurotoxic lesions of the central nucleus (CNA) and basolateral complex (BLA) of the amygdala on conditioned taste aversion (CTA) in a latent inhibition design. In Experiment 1, lesions of the CNA were found to have no affect on CTA acquisition regardless of whether the taste conditioned stimulus (CS) was novel or familiar. Lesions of the BLA, although having no influence on performance when the CS was familiar, retarded CTA acquisition when the CS was novel in Experiment 2. The pattern of results suggests that the CTA deficit in rats with BLA lesions may be a secondary consequence of a disruption of perceived stimulus novelty. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
The present experiment examined the influence of insular cortex (IC) lesions on the intake of a taste stimulus in a consummatory procedure that used morphine as the unconditioned stimulus. In normal rats, morphine caused a rapid reduction in saccharin intake when the taste was novel but not when it was familiar. Irrespective of stimulus novelty, morphine had little influence on the saccharin consumption of IC-lesioned rats. The results are discussed in terms of a lesion-induced disruption of (i) a reward comparison mechanism and (ii) the perception of taste novelty. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
It has been proposed that long-term potentiation (LTP) a form of activity-dependent modification of synaptic efficacy, may be a synaptic mechanism for certain types of learning. Recent studies on the insular cortex (IC) a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that tetanic stimulation of the basolateral nucleus of the amygdala (Bla) induce an N-methyl-d-aspartate (NMDA) dependent LTP in the IC of adult rats in vivo. Here we present experimental data showing that intracortical administration of the NMDA receptor competitive antagonist CPP (-3(-2 carboxipiperazin-4-yl)-propyl-1-phosphonic acid) disrupts the acquisition of conditioned taste aversion, as well as, the IC-LTP induction in vivo. These findings are of particular interest since they provide support for the view that the neural mechanisms underlying NMDA dependent neocortical LTP, constitute a possible mechanism for the learning related functions performed by the IC.  相似文献   

19.
The present series of experiments challenges the ability of the hormone estradiol to act as an unconditioned stimulus in the conditioned taste avoidance (CTA) learning paradigm. We hypothesize that reductions in sucrose consumption observed after pairing it with estradiol are not indicative of associative learning, but due to the unconditioned expression of estradiol’s anorectic effects during the time of CTA assessment. Three experiments in which a sucrose solution was paired with estradiol were conducted to test this hypothesis. Experiment 1 demonstrated that female rats expressed a reduction in post-pairing sucrose consumption even though the anorectic effects of estradiol had subsided. Experiment 2 showed that although a low dose of estradiol produced anorexia, it did not elicit post-pairing reductions in sucrose consumption. Experiment 3 revealed that contingent pairing was a requirement for post-pairing reduction in sucrose consumption even when testing was done at a time when anorexia is expressed. These findings demonstrate the dissociability of the conditioning and anorectic effects of estradiol, providing evidence against the hypothesis. The results are discussed in terms of independent neural mechanisms underlying the disparate behaviors. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

20.
Rats were used in a successive negative contrast procedure to determine which brain structures were activated by sucrose concentration downshifts, and on what day this occurred. Subjects were given preshift solutions for 12 days before being shifted to their postshift concentrations. Groups included 2 unshifted controls (32%-32% and 4%-4%) and 1 shifted group (32%-4%). Half of each group was killed 1 hr after the first exposure to the shifted solution (Shift 1), and half after the second exposure (Shift 2). Brains were processed for c-Fos-like immunoreactivity (FLI). Two major patterns emerged. Terminal drinking of 32% sucrose activated minimal brainstem regions involved in palatable taste, visceral feedback, and fluid homeostasis. In contrast, shifted subjects showed extensive cortical activation with selective activation in cerebral nuclei and brainstem. Robust FLI on Shift 1 was absent on Shift 2, consistent with evidence for rapid (1-trial) changes in all major motor outputs mediated by expectancy. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号