首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 125 毫秒
1.
微波加热法制备电极材料活性炭   总被引:2,自引:0,他引:2  
以煤为原料,KOH为活化剂,采用微波辐射加热法和电阻炉加热法制备出双电层电容器用活性炭。对比研究了两种工艺下KOH用量、活化时间对活性炭比电容量的影响,考察了活性炭双电层电容器的充放电特性。结果显示:微波活化时,ζ(KOH∶煤)为3∶1,起电弧时间5min,比电容为283.67F/g;电阻炉活化时,ζ(KOH∶煤)为4∶1,保温时间为1h,比电容为235.55F/g。经过100次循环充放电后,微波法和电阻炉法所得的活性炭的比电容分别保持在98.10%和91.04%。  相似文献   

2.
以石油焦为原料,KOH为活化剂,采用微波辐照加热法,制备了石油焦基双电层电容器用活性炭。研究了石油焦与KOH活化剂的比例、微波功率以及微波辐照时间对活性炭孔径分布和比电容量的影响。结果表明:在KOH活化剂与石油焦的质量比为3.5∶1,微波功率800W和辐照时间7min时,制备的活性炭比表面积为2031.96m2/g,比电容量达286.79F/g,以该活性炭作电极的双电层电容器有良好的循环稳定性和充放电性能。  相似文献   

3.
以石油焦为原料,KOH为活化剂,经微波加热活化,制备出了超级电容器用高性能活性炭电极材料。以制得的活性炭制成的电极片为电极,6mol/L的KOH溶液为电解液,组装了模拟电容器。研究了加热时间和碱焦比对活性炭比表面积及电容器性能的影响。研究表明:在KOH与石油焦按3∶1的质量比混合,微波辐射时间为15min时,制备的活性炭比表面积达2683m2/g,模拟电容器单电极比电容量达361F/g。  相似文献   

4.
双电层电容器用酚醛树脂基活性炭的制备   总被引:2,自引:0,他引:2  
以酚醛树脂为原料,KOH为活化剂制备双电层电容器用高比表面积活性炭电极材料。考察了工艺因素对活性炭比电容的影响,探讨了酚醛树脂基高比表面积活性炭作双电层电容器电极的电化学特性。结果表明,在固化温度为150℃、炭化温度为700℃,ζ(碱/炭)为4,活化温度为800℃时,制得的高比表面积活性炭双电极比电容可达74.2 F/g。  相似文献   

5.
超电容器复合活性炭电极的制备及性能研究   总被引:2,自引:0,他引:2  
用高比表面积活性炭作为原料,酚醛树脂为粘结剂,在120℃高温下粘结成型制备系列超电容器用固体活性炭电极,改变酚醛树脂添加量考察不同炭化温度对复合活性炭电极炭化收率的影响。实验发现,随着炭化温度的提高,复合活性炭电极的炭化收率呈逐渐降低的趋势,炭化温度高于800℃时复合活性炭电极比电容量下降。酚醛树脂掺杂量多时收率降低。另外在酚醛树脂中加入固化剂可提高其炭化收率。不同组成的复合活性炭电极中,微孔活性炭含量大,则比电容量高。  相似文献   

6.
双电层电容器高比表面积活性炭的研究   总被引:15,自引:3,他引:15  
以石油焦为原料,KOH和NaOH为活化剂制取双电层电容器用高比表面积活性炭电极材料。考察了活化剂的种类及其与石油焦配比对活性炭比电容的影响,并对KOH和NaOH的混和物在活化过程中金属K和Na的协同作用进行了初步探讨。研究结果表明控制适宜的活化工艺条件可制得比电容高达52.60 F/g的高比表面积活性炭,用它组装成的双电层电容器具有良好的充放电性能。  相似文献   

7.
实用化超电容器的制备与电化学性能的研究   总被引:3,自引:0,他引:3  
使用高比表面积活性炭可以制备不同电容量、不同工作电压的超电容器,高比表面积活性炭的比电容量远高于普通活性炭。10 F(9V)、45 F、600 F的超电容器样品的测试结果表明,高比表面积活性炭电极的孔径结构不会影响电容器大电流充放电容量,电化学性能稳定,高比表面积活性炭是一种待开发的优良的超电容器电极材料。  相似文献   

8.
氧化改性Ni(OH)2的电化学电容特性研究   总被引:3,自引:1,他引:2  
为获得高比电容量电极材料,制备出氧化改性Ni(OH)2,并对样品进行了XRD和XPS分析,通过恒流充放电测试分析了氧化改性Ni(OH)2/活性炭非对称型电化学电容器的电容特性,讨论了活性炭与氧化改性Ni(OH)2质量比对比电容量的影响。结果表明,氧化改性Ni(OH)2电容器性能稳定,稳定工作电压可达1.60V;在活性炭与氧化改性Ni(OH)2质量比约为2.7时,比电容量高达93.78F/g。  相似文献   

9.
徐榕青  李悦  陈艾  吴孟强  陆海鹏 《电子学报》2004,32(8):1399-1401
以间苯二酚、甲醛、硝酸镍和无水碳酸钠为原料,使用溶胶-凝胶法制备碳/氧化镍复合凝胶,经CO2超临界干燥及900℃炭化处理,得到复合碳气凝胶,电化学方法证明这种材料制备的电极具有典型的电容特性,采用1mol/L KOH电解液构成电容器单元,比电容量达263F/g,等效串联电阻小于1Ω.本文还对这种复合材料的结构形貌进行了探讨,分析了其对电容器性能的影响.  相似文献   

10.
应用sol-gel浸渍与热处理工艺相结合,在活性炭表面包覆Sb掺杂的SnO2薄膜对电极进行修饰,构成AC-SnO2/KOH/AC-SnO2双电层电容器,测试结果表明,400 mA/g电流密度条件下,修饰后的双电层电容器在0.001~1.5 V相对较高电压区间的放电容量,比AC/KOH/AC双电层电容器在0.001~1.0 V电压区间高36%,但AC-SnO2的单电极比电容仅为AC单电极比电容的91.9%;当电流密度大于400 mA/g,两种电极的大电流性能相当。  相似文献   

11.
改性活性炭双电层电容器电极材料研究   总被引:2,自引:2,他引:0  
用氢氧化钾对普通活性炭活化改性,比表面积和总孔容由806m2/g和0.411cm3/g分别增加到1168m2/g和0.577cm3/g。用该材料制成硬币型双电层电容器,经测定炭材料比电容高达203.5F/g,提高了64%;等效串联内阻仅为1.94?,大电流放电时容量衰减小于10%。其突出优点是体积与面积比电容高达109.6F/cm3和17.4×10–6F/cm2。研究发现孔径分布于1.4~2.78nm的超微孔和小中孔,有利于电解质离子形成双电层而提高炭材料的电容量。  相似文献   

12.
微波加热一步制备超级电容器用多孔炭   总被引:1,自引:1,他引:0  
为了降低超级电容器用多孔炭的成本,以花生壳为原料,磷酸为活化剂,采用微波加热法一步制备了多孔炭,研究了该多孔炭的电化学性能。结果表明,当磷酸/花生壳质量比为3,微波功率为600 W,加热时间为20 min时,所制多孔炭的比表面积为1 494 m2/g。随着磷酸/花生壳的质量比从0.6增加到3,多孔炭的比表面积逐渐增大。在电流密度为50 mA/g时,所制电极的比容达196 F/g,300次循环后,其比容保持率为92.7%。  相似文献   

13.
为了制备高体积比电容活性炭微球(AMCMB),以KOH/NaOH为复合活化剂,在850℃下对中间相沥青微球(MPMB)进行活化处理。考察了KOH/NaOH复合活化剂不同组份质量比对AMCMB收率、振实密度及比电容的影响。结果表明:随着NaOH含量的增加,AMCMB的比电容呈现先增加后减小的趋势,并在质量比ζ(KOH:NaOH)=5:1时达到最大值81F/cm3,其孔径以微孔为主,中孔含量较高,平均孔径约为2.21nm,比表面积达2788m2/g,适合用作超级电容器电极材料。  相似文献   

14.
制备了沥青焦基活性炭双电层电容器用电极材料,将其分别经水洗、酸洗以及超音速气流粉碎处理。在1 mol/L(C2H5)4NBF4/碳酸丙烯酯电解液体系中进行电化学测试,对比评价了各活性炭前处理方法对电容器电化学性能的影响。结果表明,酸洗后活性炭电极比电容提高7%达到163 F/g,高功率放电性能明显改善,当电流密度由70 mA/g增加到1 A/g时,其电极比电容保持率为88%;活性炭进行超细粉碎后不利于电化学性能的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号