首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
考虑温湿度对墙体材料热湿物性参数的影响,建立以相对湿度和温度为驱动势的墙体热湿耦合传递模型。在变温湿度边界条件下对墙体非稳态热湿耦合传递过程进行分析,计算得到墙体表面温湿度及热流密度,与不考虑传湿情况进行对比分析。结果表明:不考虑吸放湿时墙体内表面温度比考虑吸放湿时变化幅度大,且前者内表面平均温度与后者相差约0.9℃;因墙体内表面吸放湿作用引起的相变潜热约占总壁体传热量的27.5%,在负荷计算中不可忽略。  相似文献   

2.
采用自行研发的热湿耦合试验台,通过改变墙体外侧边界条件,研究边界条件变化对H型混凝土夹心秸秆砌块墙内部温湿度变化规律的影响,揭示热湿耦合传递特性。试验结果表明,室外环境温度升高5℃时,墙体内各测点的温度在16 h后达到稳定,压缩秸秆块调湿性能显著;室外环境温湿度变化仅对墙体外侧相对湿度有影响,对墙体内部及内侧相对湿度影响不大。采用课题组研发的软件HMCT1.0对典型试验工况进行模拟,结果表明,试验值与模拟值吻合较好,验证了HMCT1.0的可靠性与实用性。  相似文献   

3.
蒸发冷却与毛细管辐射供冷复合空调系统实验研究   总被引:1,自引:0,他引:1  
基于蒸发冷却辐射供冷复合空调系统工程设计方法,对蒸发冷却和辐射供冷承担的负荷进行了分配,并于复合空调系统实验台上用实验的方法对其夏季工况的新风系统、高温冷水系统和室内热湿环境进行了测试.结果表明,在中湿度地区,当供水温度19℃、置换送风温度17℃时,0.1~1.1 m高度最大温差小于2℃,1.1 m高度室内温度26~26.5℃,0.1~1.1 m高度室内温度梯度小于2℃/m,1.1~2.7 m高度室内温度梯度小于1℃/m,室内空气相对湿度为53.3%~65.4%,温、湿度均满足热舒适性要求.辐射板表面平均温度为21.75~21.9℃,始终高于室内空气露点温度,避免了结露的可能性.  相似文献   

4.
Budaiwi模型的修正及实验验证   总被引:3,自引:0,他引:3  
在Fourier定律和Fick定律的基础上,考虑墙体内部相变及太阳辐射的影响,以墙体中的空气含湿率和温度为驱动势对Budaiwi模型进行了修正,弥补了质传递方程中的遗漏之处。为了验证模型的正确性,建立了一个实验装置测试实际气候条件下墙体内的温度和相对湿度,并将实验结果跟模型预测结果进行了对比,模型预测结果跟试验测试结果吻合良好。室外侧分界面处的空气相对湿度平均误差为4.44%,平均温度偏差为1.31 K,室内侧分界面处的空气相对湿度平均偏差为6.3%,平均温度偏差为1.26 K。该改进模型能较精确的预测墙体内的热湿耦合迁移情况。  相似文献   

5.
建筑物的耗能与建筑围护结构的传热传湿密切相关,了解建筑墙体内部的热湿传递对建筑节能有重要影响。以相对湿度和温度梯度为驱动势建立墙体一维非稳态热、湿和空气耦合传递模型(HAM模型),并利用有限元法进行了数值求解,重点关注了湿传递对传热的影响。数值结果表明:考虑传湿时墙体内部温度波动小,墙体进行热湿传递会产生湿积累,降低墙体使用年限;考虑传湿时通过墙体总传热量比不考虑传湿时多7.5%;考虑传湿时内壁面最大平均数比不考虑传湿时大0.78。  相似文献   

6.
考虑水分升华、凝华、气液和固液相变,以温度和水蒸气分压力为驱动势建立了气、液、固三相水分共存的多层墙体热湿耦合传递模型.构建了1面500mm(长)×450mm(高)×240mm(厚)试验墙体,利用恒温恒湿箱试验测试了箱体温度范围为常温~-33.94℃时墙体内部温度和平衡相对湿度的变化,分析了水分固液相变过程的特征,并对热湿耦合传递模型数值模拟计算结果的正确性进行了验证.结果表明:试验墙体内部温度和水蒸气分压力数值模拟计算结果和实测结果变化趋势相同,具有良好的一致性,各点温度数值模拟计算结果的最大相对误差为1.68%,平均相对误差为0.44%;水蒸气分压力数值模拟计算结果的最大相对误差为27.92%,平均相对误差为13.50%.该模型数值模拟计算结果能够满足一般工程领域的精度要求,可应用于三相水分共存的多层墙体热湿耦合传递过程数值模拟研究.  相似文献   

7.
建筑围护结构内的热湿耦合传递是一个非常复杂的过程,其研究是降低建筑能耗、评估和预防湿害、提高室内热舒适性、室内卫生及优化围护结构性能的基础。新建节能建筑墙体具有初始含湿量大的特点,若墙体湿积累过大,则容易出现墙体表面剥蚀、渗漏、发霉甚至结构出现损坏的现象。墙体干燥时,传热传质过程同时发生且相互耦合。目前相关热物性仿真软件、理论研究和设计规范主要建立在热传递的基础上,忽略了湿传递的影响,对新建建筑墙体干燥不适用。WUFI~? Pro热湿仿真软件充分考虑了材料本身含湿量、风驱雨、太阳辐射、长波辐射、毛细传输和夏季结露等典型气候的影响,实现了对自然气候条件下建筑构件非稳态热湿性能的真实计算。节能墙体多在外墙添加内外保温层来增加围护结构的传热热阻,且在保温层内外两侧分别添加隔汽层和空气层的措施来防止保温层受潮,最终提高围护结构的保温性能。为墙体美观,多在围护结构的内外两侧分别黏贴墙纸和釉面砖。采用WUFI~? Pro对北京地区2种典型的建筑墙体进行热湿耦合传递模拟,分析新建建筑墙体在不同保温层材料和位置时的干燥过程,以及保温层两侧的隔汽层和空气层、墙体两侧的墙纸和釉面砖对墙体干燥过程的影响。模拟用室外条件为北京典型气象年小时室外气象参数,室内条件设定室内冬季供暖温度T_1=20℃,夏季室内温度设计值T_2=25℃,全年平均相对湿度为50%。模拟外围护结构属于西向,墙体温湿度初始条件为:相对湿度为100%,温度为15℃。模拟结果表明:内保温层的设置非常不利于围护结构的干燥,容易在内保温层和砌块之形成湿积累,降低围护结构的耐久性;EPS、PU和XPS都能降低围护结构含湿量,但EPS更有利于墙体干燥;隔汽层和空气层的添加可一定程度上阻止保温层受潮,避免造成湿积累,进而提高围护结构的保温性能;釉面砖和墙纸的黏贴将严重延缓围护结构的干燥过程,降低围护结构的保温性能,缩减建筑构件的使用寿命。  相似文献   

8.
通过建立非保温墙体和XPS保温墙体模型,应用COMSOL Multiphysics软件模拟墙体的热湿变化规律,分析农村保温墙体的热湿性能.结果表明:水泥砂浆与混凝土交界面、混凝土与水泥抹灰交界面分别受室外、室内温度影响大于相对湿度影响.潜热净吸热量密度在非保温墙体和XPS保温墙体内分别占净吸热量密度的21.7%和14....  相似文献   

9.
本文将汲液多孔材料管组合成被动蒸发制冷墙,通过多孔材料的主动吸水、被动蒸发产生制冷效果。应用描述非饱和多孔介质热质迁移的数学模型,分析环境参数对多孔床内部非饱和场量的影响,以及它们与蒸发制冷量之间的内在联系,所得结果与实验结果相符合。实验分析了含湿多孔材料管的排列组合方式对墙体制冷性能的影响,以及多孔材料管的汲液特性。研究结果表明:室外环境参数对多孔介质表面和内部热质迁移影响较大。在遮阳、低的空气相对湿度和有天空辐射时有利于多孔介质表面的蒸发。含湿多孔管内部水分蒸发和水蒸气凝结,与其内部温度高低、温度梯度、含湿量和湿含量梯度相关联。受含湿多孔管排列方式的影响,通过组合墙体的气流分布,气流绕过多孔材料管方式,以及气流与多孔管表面之间的接触时间等存在差异,从而影响组合墙体的制冷特性。汲液多孔材料管的汲液高度受其倾斜角的影响较小。  相似文献   

10.
运用开尔文定律和克劳修斯-克拉贝龙方程,将多孔建筑材料内水蒸气传递量和液态水传递量转变为以水蒸气分压力为驱动势的统一函数,以温度和水蒸气分压力为驱动势建立了热湿耦合传递模型,并模拟分析了上海地区自然干燥状态下加气混凝土砌块墙体10a的热湿性能变化规律.结果表明:对于初始温度为298K,含湿量(质量分数,下同)分别为2.91%,3.45%,5.03%,8.60%的4种工况,经过1a的使用后,墙体内的温湿度分布不再受初始条件影响;在正常情况阶段,墙体内表面相对湿度均小于1.0,不会出现结露现象,但是在部分时段超过了0.8,易产生霉变;墙体内部含湿量呈周期性变化,空调季为3.34%~8.31%,平均值4.45%;采暖季为3.31%~3.69%,平均值3.47%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号