首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We report on the carbon supported Ni core-Pt shell Ni1−x@Ptx/C (x = 0.32, 0.43, 0.60, 0.67, and 0.80) nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane (NH3BH3). The catalysts are prepared through a polyol synthesis process with oleic acid as the surfactant. The structure, morphology, and chemical composition of the obtained samples are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) equipped with energy dispersive X-ray (EDX), inductively coupled plasma emission spectroscopy (ICP), and nuclear magnetic resonance (NMR). The results show that the Ni core-Pt shell nanoparticles are uniformly dispersed on the carbon surface with the diameters of 2-4 nm, and furthermore, the catalysts show favorable performance toward the hydrolysis of NH3BH3. Among the nanoparticles, Ni0.33@Pt0.67/C displays the highest catalytic activity, delivering a high hydrogen release rate of 5469 mL min−1 g−1 and a low activation energy of 33.0 kJ mol−1.  相似文献   

2.
LaCo1−xRuxO3 perovskites with different substitutions of Co by Ru (x = 0.01-0.1) have been investigated as precursors of catalysts for the oxidative reforming of diesel for hydrogen production. The physicochemical characterization of LaCo1−xRuxO3 perovskites revealed modifications in their structure, crystalline size and surface area with the incorporation of ruthenium into the perovskite lattice. The modifications in the perovskites affect the structure and morphology of the catalysts obtained by reduction of perovskites prior the reaction. In the catalysts derived from ruthenium-containing perovskites it is observed a better reducibility, smaller particle size of La2O3 and Co0 phases and better surface concentration of Ru0 particles with the increase in the degree of Co substitution in the perovskite. The modifications in the characteristics of the catalysts induced by the Co substitution in perovskite directly affect their catalytic behaviour in the oxidative reforming of diesel. It is found that the greater Co0 + Ru0 exposition and the higher extension of the La2O2CO3 phase achieved in catalysts derived from perovskites with higher cobalt degree of substitution produces an increase in the activity and stability of the catalysts derived.  相似文献   

3.
The Ni1@Pt0.067 core–shell nanoparticles with a thin layer of Pt shell have been prepared by colloidal template method. The structure and composition of the prepared core–shell nanoparticles have been analyzed by using transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In addition, the electrochemical performance of the prepared nanoparticles has been analyzed by potentiodynamic polarization and cyclic voltammetry (CV), by testing their activity towards oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR). Experimental results indicate that the Ni1@Pt0.067 particles are well distributed, with an average particle size of approximately 6 nm and shell thickness of approximately 0.5 nm–2.1 nm. Compared with Pt/C, the Ni1@Pt0.067/C nanoparticles prepared in this study show significantly improved catalytic activity towards ORR and MOR. However, with increase in methanol concentration in the electrolyte composed of 0.5 mol L−1 H2SO4 + x mol L−1 methanol (where, x = 0, 0.2, 0.5 and 1.0), the limiting current of MOR on Ni1@Pt0.067/C increase remarkably, whereas the ORR activity weakens. Based on the experimental data, we analyze the mechanism underlying the impact of methanol concentration on the ORR in Ni1@Pt0.067/C and find that the surface of Pt has a variety of activity sites.  相似文献   

4.
LiNi0.6CoxMn0.4−xO2 (x = 0.05, 0.10, 0.15, 0.2) cathode materials are prepared, and their structural and electrochemical properties are investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetric (DSC) and charge–discharge test. The results show that well-ordering layered LiNi0.6CoxMn0.4−xO2 (x = 0.05, 0.10, 0.15, 0.2) cathode materials are successfully prepared in air at 850 °C. The increase of the Co content in LiNi0.6Mn0.4−xCoxO2 leads to the acceleration of the grain growth, the increase of the initial discharge capacity and the deterioration of the cycling performance of LiNi0.6Mn0.4−xCoxO2. It also leads to the enhancement of the ratio Ni3+/Ni2+ in LiNi0.6CoxMn0.4−xO2, which is approved by the XPS analysis, resulting in the increase of the phase transition during cycling. This is speculated to be main reason for the deteriotion of the cycling performance. All synthesized LiNi0.6CoxMn0.4−xO2 samples charged at 4.3 V show exothermic peaks with an onset temperature of larger than 255 °C, and give out less than 400 J g−1 of total heat flow associated with the peaks in DSC analysis profile, exhibiting better thermal stability. LiNi0.6Co0.05Mn0.35O2 with low Co content and good thermal stability presents a capacity of 156.6 mAh g−1 and 98.5% of initial capacity retention after 50 cycles, showing to be a promising cathode materials for Li-ion batteries.  相似文献   

5.
Cobalt-based catalysts for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cell (PEMFC) have been successfully incorporated cobalt oxide (Co3O4) onto Vulcan XC-72 carbon powder by thermal decomposition of Co-ethylenediamine complex (ethylenediamine, NH2CH2CH2NH2, denoted en) at 850 °C. The catalysts were prepared by adsorbing the cobalt complexes [Co(en)(H2O)4]3+, [Co(en)2(H2O)2]3+ and [Co(en)3]3+ on commercial XC-72 carbon black supports, loading amount of Co with respect to carbon black was about 2%, the resulting materials have been pyrolyzed under nitrogen atmosphere to create CoOx/C catalysts, donated as E1, E2, and E3, respectively. The composite materials were characterized using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). Chemical compositions of prepared catalysts were determined using inductively-coupled plasma-atomic emission spectroscopy (ICP-AES). The catalytic activities for ORR have been analyzed by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The electrocatalytic activity for oxygen reduction of E2 is superior to that of E1 and E3. Membrane electrode assemblies (MEAs) containing the synthesized CoOx/C cathode catalysts were fabricated and evaluated by single cell tests. The E2 cathode performed better than that of E1 and E3 cathode. This can be attributed to the enhanced activity for ORR, in agreement with the composition of the catalyst that CoO co-existed with Co3O4. The maximum power density 73 mW cm−2 was obtained at 0.3 V with a current density of 240 mA cm−2 for E2 and the normalized power density of E2 is larger than that that of commercial 20 wt.% Pt/C-ETEK.  相似文献   

6.
LiMn1.5−xM2xNi0.5−xO4 (M = Co or Cr, 0.0 ≤ x ≤ 0.2) compounds were synthesized by the sol-gel method. It is found from X-ray diffraction analysis that single spinel phases are obtained for both Cr3+- and Co3+-substitution, but a small cation mixing between the 8a and 16d sites is found only in the Co3+-substitution case. All of the compounds exhibit M-T curves characteristic of ferromagnetic materials. As the substitution degree is raised, the saturation magnetization at 4.2 K decreases and the Curie temperature shifts lower, irrespective of the kind of the substituent. That is, the cation substitution yields a reduction of the ferromagnetism. Additionally, both Cr3+- and Co3+-substitution have a large influence on the electrochemical properties. The Cr3+-substitution induces a rise in the average operating potential without a loss of redox capacity, while both the average operating potential and the redox capacity decrease with an increase in the Co3+-substitution degree.  相似文献   

7.
The present work focused on the investigation of the hydrogen generation through the ethanol steam reforming over the core–shell structured NixOy–, FexOy–, and CoxOy–Pd loaded Zeolite Y catalysts. The transmission electron microscopy (TEM) image of NixOy–Pd represented a very clear core–shell structure, but the other two catalysts, CoxOy– and FexOy–Pd, were irregular and non-uniform. The catalytic performances differed according to the added core metal and the support. The core–shell structured CoxOy–Pd/Zeolite Y provided a significantly higher reforming reactivity compared to the other catalysts. The H2 production was maximized to 98% over CoxOy–Pd(50.0 wt%)/Zeolite Y at the conditions of reaction temperature 600 °C, CH3CH2OH:H2O = 1:3, and GHSV (gas hourly space velocity) 8400 h−1. In the mechanism that was suggested in this work, the cobalt component played an important role in the partial oxidation and the CO activation for acetaldehyde and CO2 respectively, and eventually, cobalt increased the hydrogen yield and suppressed the CO generation.  相似文献   

8.
Au–Co alloys supported on Vulcan XC-72R carbon were prepared by the reverse microemulsion method and used as the anode electrocatalyst for direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties were investigated by energy dispersive X-ray (EDX), X-ray diffraction (XRD), cyclic voltammetry, chronamperometry and chronopotentiometry. The results show that supported Au–Co alloys catalysts have higher catalytic activity for the direct oxidation of BH4 than pure nanosized Au catalyst, especially the Au45Co55/C catalyst presents the highest catalytic activity among all as-prepared Au–Co alloys, and the DBHFC using the Au45Co55/C as anode electrocatalyst shows as high as 66.5 mW cm−2 power density at a discharge current density of 85 mA cm−2 at 25 °C.  相似文献   

9.
Lithium cobalt nitrides Li3−2xCoxN (0.1 ≤ x ≤ 0.44) have been prepared and investigated as negative electrode in the 1/0.02 V potential window. The evolution of the unit cell parameters and unit cell volume with the Co content show a solid solution behaviour. Whatever the Co content, all these nitrides are electroactive with a single step around 0.6 V/0.7 V for the discharge and charge processes, respectively. The electrochemical behaviour observed is typical of a Li intercalation compound and involves the Co2+/Co+ redox couple in the interlayer plane combined with the reversible accommodation of Li+ ions in the cation vacancies located in Li2N layers. XRD experiments performed after discharge, charge and cycling tests clearly indicate the hexagonal layered structure of the host lattice is maintained. This intercalation process explains the excellent capacity retention found after 50 cycles. A specific capacity of 180 mAh g−1 at C/20 and 130 mAh g−1 at C/5 rate (100 mA cm−2) is achieved for Li2.23Co0.39N. ac impedance measurements have allowed to characterize the kinetics of the reaction.  相似文献   

10.
Li1+x(Ni1/3Mn1/3Co1/3)1−xO2 layered materials were synthesized by the co-precipitation method with different Li/M molar ratios (M = Ni + Mn + Co). Elemental titration evaluated by inductively coupled plasma spectrometry (ICP), structural properties studied by X-ray diffraction (XRD), Rietveld analysis of XRD data, scanning electron microscopy (SEM) and magnetic measurements carried out by superconducting quantum interference devices (SQUID) showed the well-defined α-NaFeO2 structure with cationic distribution close to the nominal formula. The Li/Ni cation mixing on the 3b Wyckoff site of the interlayer space was consistent with the structural model [Li1−yNiy]3b[Lix+yNi(1−x)/3−yMn(1−x)/3Co(1−x)/3]3aO2 (x = 0.02, 0.04) and was very small. Both Rietveld refinements and magnetic measurements revealed a concentration of Ni2+-3b ions lower than 2%; moreover, for the optimized sample synthesized at Li/M = 1.10, only 1.43% of nickel ions were located into the Li sublattice. Electrochemical properties were investigated by galvanostatic charge-discharge cycling. Data obtained with Li1+x(Ni1/3Mn1/3Co1/3)1−xO2 reflected the high degree of sample optimization. An initial discharge capacity of 150 mAh g−1 was delivered at 1 C-rate in the cut-off voltage of 3.0-4.3 V. More than 95% of its initial capacity was retained after 30 cycles at 1 C-rate. Finally, it is demonstrated that a cation mixing below 2% is considered as the threshold for which the electrochemical performance does not change for Li1+x(Ni1/3Mn1/3Co1/3)1−xO2.  相似文献   

11.
Intermediate temperature solid oxide fuel cell cathode materials (Ba, Sr)CoxFe1−xO3−δ [x = 0.2–0.8] (BSCF), were synthesized by a glycine-nitrate process (GNP) using Ba(NO3)2, Sr(NO3)2, Co(NO3)2·6H2O, and Fe(NO3)3·9H2O as starting materials and glycine as an oxidizer and fuel. Electrolyte-supported symmetric BSCF/GDC/ScSZ/GDC/BSCF cells consisting of porous BSCF electrodes, a GDC buffer layer, and a ScSZ electrolyte were fabricated by a screen printing technique, and the electrochemical performance of the BSCF cathode was investigated at intermediate temperatures (500–700 °C) using AC impedance spectroscopy. Crystallization behavior was found to depend on the pH value of the precursor solution. A highly acidic precursor solution increased the single phase perovskite formation temperature. In the case of using a precursor solution with pH 2, a single perovskite phase was obtained at 1000 °C. The thermal expansion coefficient of BSCF was gradually increased from 24 × 10−6 K−1 for BSCF (x = 0.2) to 31 × 10−6 K−1 (400–1000 °C) for BSCF (x = 0.8), which resulted in peeling-off of the cathode from the GDC/ScSZ electrolyte. Only the BSCF (x = 0.2) cathode showed good adhesion to the GDC/ScSZ electrolyte and low polarization resistance. The area specific resistance (ASR) of the BSCF (x = 0.2) cathode was 0.183 Ω cm2 at 600 °C. The ASR of other BSCF (x = 0.4, 0.6, and 0.8) cathodes, however, was much higher than that of BSCF (x = 0.2).  相似文献   

12.
Cathode materials prepared by a co-precipitation are 0.3Li2MnO3·0.7LiMn1−xNiyCo0.1O2 (0.2 ≤ x ≤ 0.4) cathode materials with a layered-spinel structure. In the voltage range of 2.0-4.6 V, the cathodes show more than one redox reaction peak during its cyclic voltammogram. The Li/0.3Li2MnO3·0.7LiMn1−xNiyCo0.1O2 (x = 0.3, y = 0.2) cell shows the initial discharge capacity of about 200 mAh g−1. However, when x = 0.2 and y = 0.1, the cell exhibits a rapid decrease in discharge capacity and poor cycle life.  相似文献   

13.
The thermodynamic properties of CeMn1−xAl1−xNi2x (x=0.00, 0.25, 0.50 and 0.75) hydrides have been investigated in this paper. With increasing Ni substitution content, the hydrogen concentration (H/M) in CeMn1−xAl1−xNi2x (x=0.00, 0.25, 0.50 and 0.75) hydride increases from 0.129 wt% for x=0.00 to 0.421 wt% for x=0.75 at 293 K. The pressure–concentration isotherm (P–C–T) curves show that no hydrogen equilibrium pressure plateau has been observed for CeMnAl hydride while the slope of the plateau become flatter and longer with increasing Ni content. Meanwhile, the enthalpy change (ΔH0) and the entropy change (ΔS0) of the hydrides for dehydrogenization shift from −67.44 kJ mol−1 (x=0.00) to 21.16 kJ mol−1 (x=0.75) and from −0.24 kJ mol−1 K−1 (x=0) to −0.03 kJ mol−1 K−1 (x=0.75), respectively. With increasing Ni content, both ΔH0 and ΔS0 for dehydrogenization shift to the positive direction and make alloy hydrides more stable and hydrogen desorption much easier.  相似文献   

14.
Direct borohydride fuel cells (DBFCs), with a series of perovskite-type oxides La1−xSrxCoO3 (x = 0.1-0.5) as the cathode catalysts and a hydrogen storage alloy as the anode catalyst, are studied in this paper. The structures of the perovskite-type catalysts are mainly La1−xSrxCoO3 (x = 0.1-0.5) oxides phases. However, with the increase of strontium content, the intensities of the X-ray diffraction peaks of the impure phases La2Sr2O5 and SrLaCoO4 are gradually enhanced. Without using any precious metals or expensive ion exchange membranes, a maximum current density of 275 mA cm−2 and a power density of 109 mW cm−2 are obtained with the Sr content of x = 0.2 at 60 °C for this novel type of fuel cell.  相似文献   

15.
Cobalt–nickel layered double hydroxides (CoxNi1−x LDHs) were deposited onto stainless steel electrodes by the potentiostatic deposition method at −1.0 V vs. Ag/AgCl using various molar ratios of Co(NO3)2 and Ni(NO3)2 in distilled water. Their structure and surface morphology were studied by using X-ray diffraction analysis, energy dispersive X-ray spectroscopy and scanning electron microscopy. A network of CoxNi1−x LDH nanosheets was obtained. The nature of the cyclic voltammetry and charge–discharge curves suggested that the CoxNi1−x LDHs exist in the form of solid solutions. The capacitive characteristics of the CoxNi1−x LDHs in 1 M KOH electrolyte showed that Co0.72Ni0.28 LDHs had the highest specific capacitance value, 2104 F g−1, which is also the highest yet reported value for oxide materials in general.  相似文献   

16.
In this work, we report a very simple method to in situ prepare the Fe1−xNix (x = 0, 0.3, 0.4, 0.5, 0.7 and 1) nano-alloys as the catalysts for H2 generation from the aqueous NH3BH3 solution under ambient atmosphere at room temperature. The prepared nano-alloys possess Pt-like high catalytic activity, especially for the specimen of Fe0.5Ni0.5, with which the hydrolysis of NH3BH3 would totally complete in only 2.2 min. Moreover, these catalysts can be easily magnetically separated for recycle purpose, and can almost keep the same high activity even after 5 times of recycle under ambient atmosphere. Such alloy catalysts are expected to be useful for fuel cells, metal-air batteries and electrochemical sensors. Moreover, the concepts behind these preliminary results present a wide range of possibilities for the further development of synthesis of air and water-stable magnetic nano-alloys.  相似文献   

17.
The composite LaNix/Ni–S–Co film with considerable stability and high HER activity (η150 = 70 mV, 353 K) was obtained by molten salt electrolysis combined with aquatic electrodeposition. LaNix film was prepared by galvanostatic electrolysis at 100 mA cm−2 under 1273 K. The results showed that the La3+ ions could be reduced on the nickel cathode and the LaNix film could form, i.e. La3+ + 3e + xNi = LaNix (x = 5 or 3) at ca. −0.6 V, which is much lower than that of the decomposition potential of lanthanum, due to the strong depolarization effect of nickel. Furthermore, compared with the traditional amorphous Ni–S film, the composite LaNix/Ni–S–Co film could absorb large amount of H atoms, which would be oxidized and avoid the dissolution of the Ni–S–Co film under the state of open-circuit effectively and increase the HER activity.  相似文献   

18.
Layer-structured Zr doped Li[Ni1/3Co1/3Mn1−x/3Zrx/3]O2 (0 ≤ x ≤ 0.05) were synthesized via slurry spray drying method. The powders were characterized by XRD, SEM and galvanostatic charge/discharge tests. The products remained single-phase within the range of 0 ≤ x ≤ 0.03. The charge and discharge cycling of the cells showed that Zr doping enhanced cycle life compared to the bare one, while did not cause the reduction of the discharge capacity of Li[Ni1/3Co1/3Mn1/3]O2. The unchanged peak shape in the differential capacity versus voltage curve suggested that the Zr had the effect to stabilize the structure during cycling. More interestingly, the rate capability was greatly improved. The sample with x = 0.01 presented a capacity of 160.2 mAh g−1 at current density of 640 mA g−1(4 C), corresponding to 92.4% of its capacity at 32 mA g−1(0.2 C). The favorable performance of the doped sample could be attributed to its increased lattice parameter.  相似文献   

19.
A series of new oxides with the nominal composition of SmxSr1−xCo1−yCeyO3−δ (x = 0.1, 0.3, 0.5; y = 0.05, 0.1) were synthesized. Their crystal structure, morphology, thermal expansion and electrochemical properties were systematically investigated. A phase-pure perovskite-type Sm0.3Sr0.7Co0.95Ce0.05O3−δ oxide is obtained, while the other samples are actually composed of B-site cation deficient SmxSr1−xCo1−yCeyzO3−δ (0 < z < y) and CeO2 mixed phases. These two-phase samples exhibit larger oxygen nonstoichiometry (δ) and higher average thermal expansion coefficients (TEC), while the single-phase Sm0.3Sr0.7Co0.95Ce0.05O3−δ oxide shows a smaller δ and a lower TEC as compared to Sm0.3Sr0.7CoO3−δ. The introduction of cerium also effectively suppresses the chemical expansion and the growth of grain particles. The smaller grain size is beneficial in improving the electrode surface area. In addition, the electrical conductivities of Ce-doped SmxSr1−xCoO3−δ are all higher than 200 S cm−1. EIS tests demonstrate that partially substituting Co with Ce and the B-site deficiency improve the cathode performance. Sm0.3Sr0.7Co0.95Ce0.05O3−δ shows the lowest area specific resistance (ASR) among the others. Through proper cobalt-site cerium doping, the SmxSr1−xCoO3−δ related oxides could be developed into promising cathode materials for SOFC.  相似文献   

20.
A perovskite-type oxide LaNi0.8Co0.2O3 is prepared as a direct borohydride fuel cell (DBFC) cathode catalyst. Its electrochemical properties are studied by cyclic voltammetry. The results demonstrate that LaNi0.8Co0.2O3 exhibits excellent electrochemical activity with respect to the oxygen reduction reaction (ORR) and good tolerance of BH4 ions. Maximum power densities of 114.5 mW cm−2 at 30 °C and 151.3 mW cm−2 at 62 °C are obtained, and good stability (300-h stable performance at 20 mA cm−2) is also exhibited, which shows that such perovskite-type oxides as LaNi0.8Co0.2O3 can be excellent catalysts for DBFCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号