首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low Earth Orbit (LEO) satellites move with respect to a fixed observer on the Earth surface. Satellites in the polar regions and the seam switch off their intersatellite links to the neighbor satellites. As a result, the connectivity pattern of the network changes. Ongoing calls passing through these links need to be rerouted. A large number of simultaneous rerouting attempts would cause excessive signaling load in the network. Moreover, the handover calls could be blocked because of the insufficient network resources in the newly established routes or large connection re‐establishment delay. In this paper, a routing protocol is introduced to reduce the number of routing attempts resulting from link connectivity change. The protocol does not use the links that will be switched off before the connection is over. Since the call durations are not known a priori, the proposed protocol utilizes a probabilistic approach. The performance of the protocol is evaluated through simulation experiments. The experimental results indicate that the routing protocol reduces the number of rerouting attempts resulting from connectivity changes of the network. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
QoS Handover Management in LEO/MEO Satellite Systems   总被引:4,自引:0,他引:4  
Low Earth Orbit (LEO) satellite networks are foreseen to complement terrestrial networks in future global mobile networks. Although space segment topology of a LEO network is characterized by periodic variations, connections of mobile stations (MSs) to the satellite backbone network alter stochastically. As a result the quality of service delivered to users may degrade. Different procedures have been proposed either as part of a resource allocation mechanism or as part of an end-to-end routing protocol to manage transitions of MSs from one satellite to another (handover). All of these techniques are based on the prioritization of requested handovers to ease network operation and therefore enhance provision of service. This paper proposes a new handover procedure that exploits all geometric characteristics of a satellite-to-MS connection to provide an equable handover in systems incorporating onboard processing satellites. Its performance is evaluated by simulations for a variety of satellite constellations to prove its general applicability. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Low earth orbit (LEO) satellite communication systems perform frequent intersatellite handovers for both fixed and mobile users. This paper proposes a satellite selection scheme for new/handover call requests when two or more satellites can be seen simultaneously. Each satellite in this scheme has a non-uniform transmitter antenna gain according to its relative position inside the coverage area. The antenna gain is proportional to the residual distance in the satellite's direction of movement and it compensates for the difference in path losses between satellite links. The residual distance distribution of the selected satellite and the mean number of intersatellite handovers during a call connection are calculated and compared with the results based on conventional methods. The proposed scheme can reduce the intersatellite handover call attempt rate without increasing system load and terminal complexity. Furthermore, this scheme can be extended to reduce both intersatellite and interbeam handover call attempt rates in a multiple spot beam environment. Especially, the average number of intersatellite and interbeam handovers during a call can be significantly reduced by using a hybrid algorithm with the proposed non-uniform power transmission scheme. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
中低轨卫星之间跨层激光链路的无缝切换直接决定了双层卫星光网络的稳定性.异步切换方法会导致网络拓扑频繁重构,而集中同步切换将造成两层间连接中断,网络运行状态失控.为此,本文提出了中低轨卫星星座激光链路的二次同步切换方法,在保证中低轨道卫星连通的基础上,可降低网络拓扑重构频率.研究了整数周期比的中轨道和低轨道卫星空间位置特性,建立了中低轨卫星星座构形二阶非球摄动模型,确定了中低轨道之间轨道周期比为3的双层卫星星座构形.按连接和切换顺序将该星座构形中跨层激光链路分为两组,以相对周期的1/4为基准,每次令其中一组同步切换,通过交替完成切换.研究结果表明,二次同步切换方法使得网络拓扑重构频率降低到链路切换频率的1/7,比集中切换方法在网络平均时延方面降低了30ms.  相似文献   

5.
Handover management is of great importance in a low Earth orbit (LEO) satellite system. However, the blocking performance of handover traffic in an LEO satellite system is not easily formulated with an acceptable level of accuracy because of the nonstationary nature of handover traffic, which causes difficulty in quantitatively making optimal decisions for channel assignment to meet a given quality-of-service requirement. Even though many challenging schemes have been proposed to dynamically determine the number of guard channels, most either use heuristic methods or are based on simplifying assumptions, causing invalid decision results. As an alternative, we suggest a quantified method to minimize the fraction of the number of blocked calls out of the number of total calls under nonstationary handover traffic. We develop new mathematical formulations of those fraction and optimization models with efficient exact solution algorithms. Performance analysis shows that the proposed method improves the blocking probabilities of handovers and new calls; this improvement results from a highly adaptive and reactive characteristic to the fluctuating handover traffic condition.  相似文献   

6.
Low earth orbit satellite constellations could play an important role in future mobile communication networks due to their characteristics, such as global coverage and low propagation delays. However, because of the non‐stationarity of the satellites, a call may be subjected to handovers, which can be cell or satellite handovers. Quite many techniques have been proposed in the literature dealing with the cell handover issue. In this paper, a satellite handover procedure is proposed, that investigates and exploits the partial satellite diversity (namely, the existing common coverage area between contiguous satellites) in order to provide an efficient handover strategy, based always on a tradeoff of blocking and forced termination probabilities for a fair treatment of new and handover calls. Three different criteria were examined for the selection of a satellite. Each one of them could be applied either to new or handover calls, therefore we investigated nine different service schemes. A simulation tool was implemented in order to compare the different service schemes and simulation results are presented at the end of the paper. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
In the near future, low earth orbit (LEO) satellite communication networks will partially substitute the fixed terrestrial multimedia networks especially in sparsely populated areas. Unlike fixed terrestrial networks, ongoing calls may be dropped if satellite channels are shadowed. Therefore, in most LEO satellite communication networks more than one satellite needs to be simultaneously visible in order to hand over a call to an unshadowed satellite when the communicating satellite is shadowed. In this paper, handover characteristics for fixed terminals (FTs) in LEO satellite communication networks are analysed. The probability distribution of multiple satellite visibility is analytically obtained and the shadowing process of satelites for FTs are modelled. Using the proposed analysis model, shadowing effects on the traffic performance are evaluated in terms of the number of intersatellite and interbeam handovers during a call. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
秦勇  张军  张涛 《电子与信息学报》2007,29(12):2960-2964
低轨卫星网络点波束覆盖布局与用户相对运动方向决定了用户在小区间的切换关系,并直接影响用户切换性能。该文针对两种典型的小区运动模式建立了移动模型,分析了驻留时间、切换概率和平均切换次数等移动性指标,并结合具体的信道分配策略分析比较了小区移动性对用户切换性能的影响。结果表明在小区低重叠度的条件下小区运动模式Ⅱ的用户切换性能优于模式Ⅰ,更适用于低轨卫星网络,为低轨卫星点波束的布局提供了参考。  相似文献   

9.
Frequent spotbeam handovers in low earth orbit (LEO) satellite networks require a technique to decrease the handover blocking probabilities. A large variety of schemes have been proposed to achieve this goal in terrestrial mobile cellular networks. Most of them focus on the notion of prioritized channel allocation algorithms. However, these schemes cannot provide the connection-level quality of service (QoS) guarantees. Due to the scarcity of resources in LEO satellite networks, a connection admission control (CAC) technique becomes important to achieve this connection-level QoS for the spotbeam handovers. In this paper, a geographical connection admission control (GCAC) algorithm is introduced, which estimates the future handover blocking performance of a new call attempt based on the user location database, in order to decrease the handover blocking. Also, for its channel allocation scheme, an adaptive dynamic channel allocation (ADCA) scheme is introduced. By simulation, it is shown that the proposed GCAC with ADCA scheme guarantees the handover blocking probability to a predefined target level of QoS. Since GCAC algorithm utilizes the user location information, performance evaluation indicates that the quality of service (QoS) is also guaranteed in the non-uniform traffic pattern.  相似文献   

10.
This paper presents an analysis of handover process and its effect on the traffic performance in global mobile personal communications by satellite (GMPCS) systems. With the nongeostationary satellite used for the system, the handover scheme needs to be applied to make calls completed without any interruption. An analytical model is developed for the analysis of the handover process. We derive the mean number of handovers and handover delay with various satellite antenna patterns and different settings of handover parameter. A suitable traffic model of the whole system is also derived after due considerations of the handover process. The system performance measures include new call blocking probability, call dropping probability, and mean number of handovers per call. A computer simulation is developed and used. We also analyze the system performance with a number of handover priority schemes applied. Based on the study results, the handover parameters are selected to maximize the traffic performance. It is shown that we can improve the overall traffic performance of GMPCS system by setting handover parameters properly and using the handover priority scheme  相似文献   

11.
A distributed QoS routing based on ant algorithm for LEO satellite network   总被引:2,自引:0,他引:2  
Low Earth Orbit (LEO) satellites provide short round-trip delays and are becoming in- creasingly important. One of the challenges in LEO satellite networks is the development of specialized and efficient routing algorithms. To satisfy the QoS requirements of multimedia applications, satellite routing protocols should consider handovers and minimize their effect on the active connections. A distributed QoS routing scheme based on heuristic ant algorithm is proposed for satisfying delay bound and avoiding link congestion. Simulation results show that the call blocking probabilities of this al- gorithm are less than that of Shortest Path First (SPF) with different delay bound.  相似文献   

12.
Low Earth Orbit (LEO) satellite networks are deployed as an enhancement to terrestrial wireless networks in order to provide broadband services to users regardless of their location. In addition to global coverage, these satellite systems support communications with hand-held devices and offer low cost-per-minute access cost, making them promising platform for Personal Communication Services (PCS). LEO satellites are expected to support multimedia traffic and to provide their users with the negotiated Quality of Service (QoS). However, the limited bandwidth of the satellite channel, satellite rotation around the Earth and mobility of end-users makes QoS provisioning and mobility management a challenging task. One important mobility problem is the intra-satellite handoff management. The main contribution of this work is to propose Q-Win, a novel call admission and handoff management scheme for LEO satellite networks. A key ingredient in our scheme is a companion predictive bandwidth allocation strategy that exploits the topology of the network and contributes to maintaining high bandwidth utilization. Our bandwidth allocation scheme is specifically tailored to meet the QoS needs of multimedia connections. The performance of Q-Win is compared to that of two recent schemes proposed in the literature. Simulation results show that our scheme offers low call dropping probability, providing for reliable handoff of on-going calls, good call blocking probability for new call requests, while maintaining bandwidth utilization high.  相似文献   

13.
14.
Efficient dynamic channel allocation techniques with handover queuing suitable for applications in mobile satellite cellular networks, are discussed. The channel assignment on demand is performed on the basis of the evaluation of a suitable cost function. Geostationary and low Earth orbit (LEO) satellites have been considered. In order to highlight the better performance of the dynamic techniques proposed, a performance comparison with a classical fixed channel allocation (FCA) has been carried out, as regards the probability that a newly arriving call is not completely served. It has also been shown that a higher traffic density, with respect to GEO systems, is manageable by means of LEO satellites  相似文献   

15.
The spectacular growth of cellular telephone networks has demonstrated the demand for personal communications. Communication systems based on low earth orbit (LEO) constellations of satellites seem to be an adequate approach to achieve a world-wide network. When defining the capacity in terms of satellite circuits, the network designer has to take into account the handover traffic. Unfortunately, in a LEO communication network where handover is most often due to the network nodes motion, handover traffic models for terrestrial cellular networks cannot be used. Hence specific models must be developed. This paper proposes an analytical model for the handover in LEO satellite networks. This model is applied to different network configurations and compared to discrete-time simulations. Simulation results agree with those obtained from the analytical model.  相似文献   

16.
低中轨道双层卫星光网络的分时切换半实物仿真演示系统   总被引:2,自引:2,他引:0  
为精确模拟验证低中轨道(LEO/MEO)双层卫星光网络及其关键技术,按1:30的比例设计了分时切换双层卫星光网络半实物实验演示系统。系统包括计算机仿真环境和硬件平台两部分,通过SITL模块互联而成。软件部分由虚拟网络组成,实现灵活、可扩展的配置;硬件平台由1个圆形往复转台、6个伺服机构、6个无线激光通信终端和6组自动追...  相似文献   

17.
The enormous increase in wireless communications and the growing request for transmission bandwidth have led to the need to configure wireless access networks with cellular structures based on the use of micro- and pico-cells. Applying these structures means that handovers between neighboring cells are more frequent and therefore have to be carefully managed. A key issue in connection with this is the rerouting of the data flows directed to a user making a handover. In fact, the time interval needed to update all the routing tables in the crossover switches is critical because in this interval data have to be stored, and later forwarded once the route towards the new location has been determined. The paper considers a connectionless protocol, the Signaling Network Layer (SNL), which has been conceived for use in the Universal Mobile Telecommunication System (UMTS) context for connection rerouting purposes and is based on a tree-structured rerouting architecture. Through an analytical model based on a queueing network, its performance is analyzed in terms of the distribution of the rerouting delay. The proposed model is then applied to a case study to demonstrate its versatility and manageability and to get insight into the dimensioning of the rerouting architecture.  相似文献   

18.
Marsan  M. Ajmone  Chiasserini  C.F.  Fumagalli  A.  Lo Cigno  R.  Munafò  M. 《Wireless Networks》2001,7(4):425-436
This paper presents a handover protocol for wireless ATM networks, which makes use of in-band signaling, i.e., of ATM resource management cells, to process network handovers and guarantee the in-sequence and loss-free delivery of the ATM cells containing user data. The goal of the proposed approach is to minimize the modifications of the ATM signaling standard required to overlay user mobility onto the fixed network infrastructure, and provide for a gradual upgrade of the fixed network to handle mobility. The proposed protocol handles both local handovers, in which the connection access point needs not migrate to a new ATM local exchange, and global handovers, in which the connection access point must migrate to a new local exchange. The handover scheme is devised so as to grant in-sequence delivery of cells. The performance of the network during handover is analyzed in case of connections requiring loss-free operation. The considered performance figures are the cell transmission delay introduced by the handover and the cell buffering requirements posed to the network. The behavior of the proposed protocol in presence of multiple handovers is studied via simulation, while a simple analytical method is derived for the performance evaluation of a single handover in isolation.  相似文献   

19.
低轨(LEO)卫星网络作为地面网络的重要补充,是未来天地一体化网络的重要组成部分。由于LEO卫星的高移动速度以及星地通信的大传播距离造成了高传播时延,因此需要新的针对LEO卫星星地通信背景的上行链路的定时提前量(TA)的计算策略。本文基于LEO卫星的星地通信场景,介绍了TA及其在协议中的规定,并针对LEO卫星的特点,提出一种LEO卫星通信的定时提前计算方法。通过仿真分析验证了所提方案的有效性,为LEO卫星星地通信系统的设计提供了参考。  相似文献   

20.
A major problem for low Earth orbit (LEO) constellations with intersatellite links is the efficient routing of the data packets through such a highly dynamic network. In order to achieve a worldwide coverage even in remote areas and Internet access with a limited amount of gateway stations, intersatellite links are a promising approach. Since LEO constellations represent a distinct, highly dynamic routing environment, specific strategies are needed. To this end, a suitable geographical routing scheme is proposed and investigated in two Walker Star constellations. The proposed scheme targets reliable transmissions with low latency and high data rates. The approach is based on a geographical address identifier in Layer 2 of the communication stack. The globe is thus divided into geographical areas that determine this identifier in the MAC address of the terminals. As mobile terminals are considered, the MAC addressing scheme is flexible, whereas the IP addresses of the terminals remain static. This decoupling allows for flexibility in the choice of the address resolution scheme. Moreover, the geographical identifier in the MAC address enables fast routing table lookups and switching. The proposed routing scheme also takes possible overloads of the satellites due to traffic into account and applies a rerouting procedure. When a packet arrives in the geographical area of the destination terminal, a local rerouting scheme is applied if needed. The proposed approaches take handover events that possibly occur during a transmission into account. Furthermore, the scan angles of the satellites have been adapted to the constellations to provide full coverage and high elevation angles. So a robust and adaptable routing scheme is provided for a dynamic environment where satellites and terminals are constantly moving. The proposed definitions and procedures have been implemented in a system level simulator, which allows for comparisons with adjustable parameters in various scenarios. In this work, an Iridium‐like constellation and a megaconstellation are investigated and compared regarding the address resolution procedures, the average end‐to‐end transmission delay, and the dropping and rerouting rates. Additionally, the signaling overhead is compared with other approaches. The simulator and results of the simulations provide grounds for further research w.r.t. the routing in satellite constellations using intersatellite links.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号