首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在界面聚合过程中,通过添加改进水热方法制备的球形介孔SiO2纳米材料,制备了改性的聚酰胺反渗透复合膜。使用扫描电镜、X射线衍射和氮气吸附-脱附等手段对制备的介孔SiO2纳米材料进行表征;采用反渗透膜评价装置、原子力显微镜、扫描电镜(SEM)和静态接触角仪器等手段对复合膜的性能和结构进行测试和表征;并对比了相同粒径大小的实心SiO2和介孔SiO2对膜渗透性能的影响。结果证明:成功合成了一种具有孔径分布均匀、粒径均一、比表面积较大、分散性较好的介孔SiO2纳米球形颗粒;SEM表征结果证实纳米材料在膜表面分布均匀,膜表面亲水性能提高,粗糙度变大;膜性能测试结果证实了介孔SiO2的添加使得膜在维持较高截留率的前提下,具有更高的水通量;同时,通过对比相同尺寸的实心SiO2作为添加材料,证实了介孔SiO2的孔道结构更有利于水分子的传输。当介孔SiO2添加质量为0.06%时,水通量由23L/(m2·h)提高至39L/(m2·h),对氯化钠的截留仍然维持在98%以上。  相似文献   

2.
Magnetite nanoparticles coated by mesoporous silica were synthesized by an alternative chemical route using a neutral surfactant and without the application of any functionalization method. The magnetite (Fe(3)O(4)) nanoparticles were prepared by precipitation from aqueous media, and then coated with mesoporous silica by using nonionic block copolymer surfactants as the structure-directing agents. The mesoporous SiO(2)-coated Fe(3)O(4) samples were characterized by x-ray diffraction, Fourier-transform infrared spectroscopy, N(2) adsorption-desorption isotherms, transmission electron microscopy, (57)Fe M?ssbauer spectroscopy, and vibrating sample magnetometry. Our results revealed that the magnetite nanoparticles are completely coated by well-ordered mesoporous silica with free pores and stable (~8?nm thick) pore walls, and that the structural and magnetic properties of the Fe(3)O(4) nanoparticles are preserved in the applied synthesis route.  相似文献   

3.
Pd-doped tin oxide nanoparticles dispersed in mesoporous silica were prepared by a thermal-decomposing method and characterized by isothermal nitrogen adsorption measurement, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Tin oxide nanoparticles grow up slowly owing to confinement of the pores of the mesoporous silica. Due to the unique microstructure of the mesoporous silica, the obtained nanocomposite consists of a three-dimensional web of interconnected crystallites of tin oxide and exhibits electronic conductivity when enough tin oxide is assembled in the silica pores. The obtained nanocomposite has also a large specific surface area, and the tin oxide nanoparticles have a free surface in contact with the ambient air. Therefore, the samples exhibit a high sensitivity to CO gas, and have potential application.  相似文献   

4.
制备了以SiO2为核、介孔SiO2为壳的核-壳颗粒负载纳米金属颗粒以及介孔SiO2壳层包覆SiO2负载的纳米金属颗粒。结果表明,十六烷基三甲基溴化胺(CTAB)作为模板剂,有助于介孔SiO2壳层包覆SiO2核的结构形成,介孔SiO2壳层的孔径方向垂直于SiO2核的表面;在聚乙烯吡咯烷酮(PVP)的稳定作用下,Pt纳米颗粒能均匀地分布在介孔SiO2壳层的表面。单分散SiO2颗粒经过3-氨丙基三乙氧基硅烷(APS)功能化后,可负载纳米金属颗粒。进一步研究表明,以SiO2负载纳米金属颗粒为核,NH3.H2O,乙醇和水为分散剂,CTAB为模板剂,正硅酸乙酯(TEOS)为硅源,还能制备介孔SiO2壳包覆SiO2负载的纳米金属颗粒,而且介孔SiO2壳层的厚度可通过TEOS的含量调节。  相似文献   

5.
Pd nanoparticles supported in functionalized mesoporous silica were prepared. Mesoporous silica support was modified with [3-(2-aminoethyl aminopropyl)] trimethoxysilane. Palladium ions were grafted onto the functionalized mesoporous silica and reduced with hydrazine hydrate to obtain the Pd nanoparticles supported on functionalized mesoporous silica. The Pd loading in the nanocomposite of Pd supported on the functionalized mesoporous silica is 4.30 wt%. CO chemisorption analysis on the nanocomposite shows a Pd dispersion as high as 35% and a Pd surface area of 156 m2/g. The surface area, pore size, and pore volume decrease slightly with the incorporation of the Pd nanoparticles into the functionalized mesoporous silica. Pd supported on the functionalized mesoporous silica with controlled molar ratio of amino groups to palladium exhibits an excellent catalytic activity and low Pd leaching for the Heck carbon-carbon coupling reaction. The catalyst can be reused for at least six recycles in air with only a minor loss of activity.  相似文献   

6.
在高速搅拌条件下调整分子组装过程的外界应力,制备出短通道(500~700 nm)、条棒状的有序介孔二氧化硅,研究不同模板剂脱除方式对介孔二氧化硅的水蒸气吸附性能影响,获得强化介孔二氧化硅吸附性能的方法。结果表明:在短通道、条棒状介孔二氧化硅的制备过程中模板剂脱除的温度对材料表面羟基浓度影响较大,选择萃取与低温煅烧相结合方法脱除模板剂,萃取4次,250℃煅烧脱除模板剂的材料水蒸气吸附性能最好,在实验条件下平衡吸附时间约为7.5 min,是商品SBA-15的78.95%;平衡吸附量0.73 g·g^(-1),是商品SBA-15的1.49倍。  相似文献   

7.
High surface area (887.3m(2)/g) silica nanoparticles were synthesized using aerogel route and thereafter, characterized by N(2)-Brunauer-Emmet-Teller (BET), SEM and TEM techniques. The data indicated the formation of nanoparticles of silica in the size range of 24-75 nm with mesoporous characteristics. Later, these were impregnated with reactive chemicals such as N-chloro compounds, oxaziridines, polyoxometalates, etc., which have already been proven to be effective against sulphur mustard (HD). Thus, developed novel mesoporous reactive sorbents were tested for their self-decontaminating feature by conducting studies on kinetics of adsorptive removal of HD from solution. Trichloroisocyanuric acid impregnated silica nanoparticles (10%, w/w)-based system was found to be the best with least half-life value (t(1/2)=2.8 min) among prepared systems to remove and detoxify HD into nontoxic degradation products. Hydrolysis, dehydrohalogenation and oxidation reactions were found to be the route of degradation of HD over prepared sorbents. The study also inferred that 10% loading of impregnants over high surface area and low density silica nanoparticles enhances the rate of reaction kinetics and seems to be useful in the field of heterogeneous reaction kinetics.  相似文献   

8.
A versatile system combining chemotherapy with photothermal therapy for cancer cells using Pd nanosheet‐covered hollow mesoporous silica nanoparticles is reported. While the hollow mesoporous silica core can be used to load anticancer drugs (i.e., doxorubicin) for chemotherapy, the Pd nanosheets on the surface of particles can convert NIR light into heat for photothermal therapy. More importantly, the loading of Pd nanosheets on hollow mesoporous silica nanospheres can dramatically increase the amount of cellular internalization of the Pd nanosheets: almost 11 times higher than the unloaded Pd nanosheets. The as‐prepared nanocomposites efficiently deliver both drugs and heat to cancer cells to improve the therapeutic efficiency with minimal side effects. Compared with chemotherapy or photothermal therapy alone, the combination of chemotherapy and phototherapy can significantly improve the therapeutic efficacy, exhibiting a synergistic effect.  相似文献   

9.
Hollow spheres with mesoporous silica nanoparticles shell were synthesized with the use of cetyltrimethylammonium bromide (CTAB) and polystyrene (PS) hollow spheres as dual templates. The key to this study is that the uneven surface of the template provides nucleation sites for mesoporous nanoparticles, resulting in the formation of hollow spheres with mesoporous silica nanoparticles shell. The final products with hierarchical mesopores can be obtained through a simple one-step approach.  相似文献   

10.
As structure-directing agents, the molecular structure of surfactants is critical for determining the properties of prepared mesoporous materials. Using dehydroabietic acid as a starting material, a series of rosin-based Gemini surfactants (abbreviated as R-n-R, n = 3, 6, 8 and 10, indicating the carbon atom number contained in the spacer) were synthesized and applied as templates in the preparation of ordered mesoporous silica. The structures and morphologies of the samples were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope and N2 adsorption–desorption. The R-n-R surfactants feature rigid tricyclic hydrophobic groups with large volumes, which are beneficial for the formation of a three-dimensional cubic phase. Furthermore, the spacer length was found to have a tremendous effect on the structure of the prepared mesoporous silica materials. The head group of R-3-R, which has a short spacer, is excessively charged, leading to silica nanoparticles with an irregular morphology and a rather low BET surface area. With longer spacer lengths, R-6-R, R-8-R and R-10-R are conducive to generating silica nanoparticles with a novel dumbbell-like morphology and with higher BET surface areas of 1171, 1096 and 1186 m2 g?1, respectively. The results demonstrate the particularities of the Gemini surfactant structure in the preparation of mesoporous silica nanoparticles with novel morphologies, and the details of the molecular interactions that occur in the condensation of silicate anions are also revealed.  相似文献   

11.
CdS nanoparticles, prepared in reverse micellar systems, were immobilized onto two types of thiol-modified periodic mesoporous organosilicates (PMOS), t-PMOS(I) and t-PMOS(II) by a simple procedure via the addition of t-PMOS and mild stirring. A particle-sieving effect of the t-PMOS was observed, in that the immobilization of the CdS nanoparticles was decreased with increasing the nanoparticle size. The resulting CdS-PMOS(I) and CdS-PMOS(II) were then used as photocatalysts for the generation of H2 from 2-propanol aqueous solution. CdS-PMOS(II), which was more stable against photoirradiation, showed higher photocatalytic activity, compared to CdS-PMOS(I). The quantity of H2 generated on the PMOS-immobilized CdS nanoparticles was greater than that obtained from mesoporous silica (MCM-41)-immobilized CdS nanoparticles (CdS-L-FM41).  相似文献   

12.
The generation of patterned surfaces with well‐defined nano‐ and microdomains is demonstrated by attaching core/shell, semisoft nanoparticles with narrow size distribution to microdomains of a gold‐coated silicon wafer. Near monodisperse nanoparticles are prepared using reversible addition‐fragmentation chain transfer (RAFT) polymerization, initiated from a silica surface, to prepare a polystyrene shell around a silica core. The particles are then used as‐prepared, or after aminolysis of the terminal thiocarbonyl group of the polystyrene shell, to give thiol‐terminated nanoparticles. When gold‐coated silicon wafers are immersed into very dilute suspensions of these particles (as low as 0.004 wt%), both types of particles are shown to adhere to the gold domains. The thiolated particles adhere selectively to the gold microdomains, allowing for microdomain patterning, while particles that contain the trithiocarbonate functionality lead to a much more even coverage of the gold surface with fewer particle aggregations.  相似文献   

13.
Nonionic surfactant as liquid organic template and tetraethoxysilane as silica precursor were used for the synthesis of mesoporous silica with ordered arrangement of nanopores (diameters are about 1-6 nm). The synthesized mesoporous silica was used as the template for the synthesis of ZnO nanoparticles using zinc acetylacetonate as ZnO precursor. The as synthesized ZnO incorporated in the mesoporous silica nanocomposite were analyzed using X-ray diffraction, TEM and Photoluminescent spectrum. ZnO introduction has no extensive influence on the mesoporous structure of silica. Quantum confinement effects are observed in the case of ZnO nanoparticles embedded in mesoporous silica. The particle size of ZnO is about 3.2 nm. The band gap is broadening to 3.47 eV.  相似文献   

14.
Hollow mesoporous silica nanoparticles (HMSNs) have become an attractive drug carrier because of their unique characteristics including stable physicochemical properties, large specific surface area and facile functionalization, especially made into intelligent drug delivery systems (DDSs) for cancer therapy. HMSNs are employed to transport traditional anti-tumor drugs, which can solve the problems of drugs with instability, poor solubility and lack of recognition, etc., while significantly improving the anti-tumor effect. And an unexpected good result will be obtained by combining functional molecules and metal species with HMSNs for cancer diagnosis and treatment. Actually, HMSNs-based DDSs have developed relatively mature in recent years. This review briefly describes how to successfully prepare an ordinary HMSNs-based DDS, as well as its degradation, different stimuli-responses, targets and combination therapy. These versatile intelligent nanoparticles show great potential in clinical aspects.  相似文献   

15.
Monodispersive silica nanoparticles have been synthesized via the Sto?ber process and further functionalized by adding fluorinated groups using fluoroalkylsilane in an ethanolic solution. In this process, six different sizes of fluorinated silica nanoparticles of varying diameter from 40 to 300 nm are prepared and used to deposit thin films on aluminum alloy surfaces using spin coating processes. The functionalization of silica nanoparticles by fluorinated group has been confirmed by the presence C-F bonds along with Si-O-Si bonds in the thin films as analyzed by Fourier transform infrared spectroscopy (FTIR). The surface roughnesses as well as the water contact angles of the fluorinated silica nanoparticle containing thin films are found to be increased with the increase of the diameter of the synthesized fluorinated silica nanoparticles. The thin films prepared using the fluorinated silica nanoparticles having a critical size of 119 ± 12 nm provide a surface roughness of ~0.697 μm rendering the surfaces superhydrophobic with a water contact angle of 151 ± 4°. The roughness as well as the water contact angle increases on the superhydrophobic thin films with further increase in the size of the fluorinated silica nanoparticles in the films.  相似文献   

16.
Near‐infrared (NIR)‐to‐visible up‐conversion fluorescent nanoparticles have potential to be used for photodynamic therapy (PDT) in deep tissue because NIR light can penetrate thick tissue due to weak absorption in the optical window. Here a uniform layer of mesoporous silica is coated onto NaYF4 up‐converting nanocrystals, with a large surface area of ≈770 m2 g?1 and an average pore size of 2 nm. A photosensitizer, zinc phthalocyanine, is incorporated into the mesoporous silica. Upon excitation by a NIR laser, the nanocrystals convert NIR light to visible light, which further activates the photosensitizer to release reactive singlet oxygen to kill cancer cells. The photosensitizer encapsulated in mesoporous silica is protected from degradation in the harsh biological environment. It is demonstrated that the photosensitizers loaded into the porous silica shell of the nanoparticles are not released out of the silica while they continuously produce singlet oxygen upon excitation by a NIR laser. The nanoparticles are reusable as the photosensitizers encapsulated in the silica are removed by soaking in ethanol.  相似文献   

17.
In the present work, the preparation, characterisation, and efficiency of two different silica nanostructures as release vehicles of Cisplatin are reported. The 1‐hexadeciltrimethyl‐ammonium bromide templating agent was used to obtain mesoporous silica nanoparticles which were later loaded with Cisplatin. While sol–gel silica was very fast prepared using an excess of acetic acid during the hydrolysis–condensation reactions of tetraethylorthosilicate and at the same time the Cisplatin was added. Several physicochemical techniques including spectroscopies, electronic microscopy, X‐ray diffraction, N2 adsorption–desorption were used to characterise the silica nanostructures. An in vitro Cisplatin release test was carried out using artificial cerebrospinal fluid. Finally, the toxicity of all silica nanostructures was tested using the C6 cancer cell line. The spectroscopic results showed the suitable stabilisation of Cisplatin into the two different silica nanostructures. A large surface area was obtained for the mesoporous silica nanoparticles, while low areas were obtained in the silica nanoparticles. Cisplatin was released faster from mesoporous silica channels than from inside of aggregates nanoparticles silica. Cisplatin alone, as well as, cisplatin released from both silica nanostructures exerted a toxic effect on cancer cells. In contrast, both silica structures without the drug did not exert any toxic effect.Inspec keywords: cellular biophysics, desorption, adsorption, biomedical materials, sol‐gel processing, silicon compounds, cancer, toxicology, nanofabrication, brain, condensation, mesoporous materials, nanoparticles, X‐ray diffraction, nanomedicine, drugs, aggregates (materials)Other keywords: mesoporous silica channels, silica‐based nanoparticles, cancer brain cells, silica nanostructures, 1‐hexadeciltrimethyl‐ammonium bromide, mesoporous silica nanoparticles, sol‐gel silica, C6 cancer cell line, in vitro cisplatin release test, C6 cancer cell line, acetic acid, hydrolysis‐condensation reactions, tetraethylorthosilicate, physicochemical techniques, electronic microscopy, X‐ray diffraction, N2 adsorption‐desorption, artificial cerebrospinal fluid, toxicity, toxic effect, N2 , SiO2   相似文献   

18.
Rapid synthesis of silica with ordered hexagonal mesopore arrangement was obtained using solution plasma process (SPP) by discharging the mixture of P123 triblock copolymer/TEOS in acid solution. SPP, moreover, was utilized for Ag nanoparticles (AgNPs) incorporation in silica framework as one-batch process using silver nitrate (AgNO3) solution as precursor. The turbid silicate gel was clearly observed after discharge for 1 min and the white precipitate formed at 3 min. The mesopore with hexagonal arrangement and AgNPs were observed in mesoporous silica. Two regions of X-ray diffraction patterns (2θ < 2° and 2θ = 35–90°) corresponded to the mesoporous silica and Ag nanocrystal characteristics. Comparing with mesoporous silica prepared by a conventional sol–gel route, surface area and pore diameter of mesoporous silica prepared by solution plasma were observed to be larger. In addition, the increase in Ag loading resulted in the decrease in surface area with insignificant variation in the pore diameter of mesoporous silica. SPP could be successfully utilized not only to enhance gelation time but also to increase surface area and pore diameter of mesoporous silica.  相似文献   

19.
Cubic Pm3n mesoporous silica films have been prepared on silicon wafers and quartz crystal microbalance (QCM) devices covered with gold electrodes by a spin-coating process from preformed silica/CTABr/ethanol/water assemblies under acidic conditions. Post-synthesis functionalization of mesoporous films with amino- and thiol-containing organosilanes is performed in order to modify the mesoporous surface for further confinement of nanoscale structures. The type of mesophase structure and the functionalization process was followed with surface sensitive techniques such as grazing incidence diffraction (GID), reflection-absorption FT-IR spectroscopy and gravimetric measurements by applying QCMs technique. Nitrogen sorption data using QCM devices were obtained for the calcined and functionalized mesoporous films.  相似文献   

20.
A novel palladium catalyst immobilised the mesoporous molecular sieve Hexagonal Mesoporous Silica (HMS) was prepared via a self-assembly process. The catalytic activity and recycle ability of the spherical palladium/HMS nanocomposites were examined for the Heck reaction. Palladium nanoparticles incorporated into HMS are characterised by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). The morphology of HMS is predominated with spheres, and Pd nanoparticles are randomly distributed throughout the entire silica framework without severe agglomeration. The heterogeneous catalyst is proved to be an active and reusable catalyst in the coupling of ethyl acrylate with aryl halides because of combination, the advantages of stabilising agent and mesoporous silica support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号