首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
为了探讨微波-活性炭-Fenton试剂催化氧化体系处理焦化废水的最佳工艺条件,研究活性炭用量,H2O2用量,微波功率,微波辐射时间,废水pH值等不同因素对焦化废水COD去除效果的影响,再通过正交实验得出最佳处理条件.发现对50mL焦化废水,活性炭用量为0.4g,H2O2用量为3mL,微波功率为400W,微波辐射时间为5min,废水pH值为5时的COD去除效果最好.该条件下焦化废水COD去除率达85%以上.并由此初步建立了微波-活性炭-Fenton试剂催化氧化体系处理焦化废水的工艺.  相似文献   

2.
为达到采用微波诱导氧化工艺(MIOP)处理北系染料废水的目的,分别考察了活性炭种类、活性炭用量、微波辐射时间、微波功率、H2O2用量和pH值等因素对处理效果的影响.结果表明,6 g活性炭与50 mL北系废水混合,在微波功率为480?W,辐射时间6 min,H2O2用量2.0 mL,FeSO4用量0.07 g,pH=3的条件下,对废水COD的去除率达到98.95%.微波诱导氧化、活性炭吸附和单独微波辐射3种不同工艺的对比实验表明,微波诱导氧化有明显的优越性,且不会对环境造成二次污染.动力学研究表明,该氧化过程符合一级动力学规律,反应速率常数K=0.086 min-1,反应半衰期t1/2=8.06 min.  相似文献   

3.
微波诱导氧化处理直接蓝染料废水的研究   总被引:2,自引:0,他引:2  
采用微波诱导氧化工艺(MIOP)处理直接蓝染料废水,用实验方法分别考察了活性炭种类、活性炭用量、微波辐射时间、微波功率、H2O2用量和pH值等因素对处理效果的影响.结果表明,5 g活性炭与50 mL直接蓝废水混合(固液比为1∶10),在微波功率为480 W,辐射时间6 min,H2O2用量2.0 mL,pH=3的条件下,对废水COD的去除率达到97.4%.动力学研究表明,该氧化过程符合一级动力学规律,反应速率常数K=0.088 min-1,反应半衰期t1/2=7.88 min.MIOP有望在废水处理中得到广泛应用.  相似文献   

4.
微波诱导二氧化氯氧化处理水中苯酚   总被引:2,自引:0,他引:2  
以模拟苯酚废水为处理对象,以ClO2为氧化剂,以微波诱导作为辅助手段,考察微波诱导ClO2氧化处理苯酚配水工艺中,ClO2投加体积、微波辐照功率、微波辐照时间、废水温度、废水pH等因素对苯酚处理效果的影响。实验结果表明,处理1 0 0 mL质量浓度为1 0 0 mg/L的苯酚配水,ClO2的投加质量分数为1%的ClO2溶液1.012 mL(苯酚与ClO2摩尔比为0.734∶1),微波功率为50 W,辐照时间为6 min,配水pH 3~5时,处理效果最好,苯酚的去除率达到83.16%。并且,在相同的处理条件下,微波诱导ClO2氧化苯酚的效率明显高于传统水浴加热法,并且大大缩短了反应时间,表明该法是一种行之有效的含酚废水的处理方法。  相似文献   

5.
目的 采用微波化学工艺,对微波强化腐殖酸-Fenton氧化降解硝基苯进行研究,探讨不同因素条件下对硝基苯的降解效果,并结合成本因素确定各参数的优化反应条件.方法 利用微波和腐殖酸-Fenton的协同作用,改变腐殖酸质量浓度、Fe3+物质的量浓度、微波功率、辐射时间、H2O2物质的量浓度及pH等工艺参数对水中硝基苯进行氧化处理.结果 100 mL的硝基苯原水,微波辐照功率为125 W,辐照时间为5min,Fe3+的物质的量浓度为2.0×10-4 mol/L,腐殖酸的质量浓度为20 mg/L,H2O2的物质的量浓度为3.5 mmol/L,pH在3~6.在最优条件下,初始质量浓度为75 mg/L的硝基苯降解率达到96.1%,出水质量浓度低于2.0 mg/L,达到国家一级排放标准.结论 pH值和Fe3+的用量在一个最佳反应范围之内;随着H2O2的投加量、微波功率、辐射时间的增大,硝基苯的降解率也逐渐升高.加入腐殖酸后,促进反应进行,在pH接近中性时反应仍具有很高的降解率;微波强化腐殖酸-Fenton氧化工艺能够有效的降解硝基苯废水.  相似文献   

6.
利用微波及活性炭共同作用促进K_2S_2O_8产生硫酸根自由基降解苯酚废水,通过改变反应时间、活性炭的投加量、K_2S_2O_8的投加量、微波的消解功率以及pH,对比反应前后苯酚浓度及COD的变化,确定该体系反应的最佳条件。研究表明,在微波功率560 W、辐射5 min、活性炭的投加量0.17g、m(K2S2O8)/m(苯酚)=0.5、pH=4时,200mg/L体积为30mL的苯酚去除率达到86%,COD去除率达到85%。  相似文献   

7.
活性炭-微波辐射深度处理焦化废水   总被引:16,自引:0,他引:16  
在活性炭存在条件下,采用微波辐射对焦化废水生化处理系统的外排水进行深度处理.考察活性炭用量、废水pH值、微波辐射时间和微波功率对废水COD去除率的影响.结果表明,采用3 g颗粒活性炭与50 mL焦化废水混合,在微波辐射功率为700 W,辐射处理6 m in的条件下,废水的COD去除率达77%.动力学研究表明,该反应过程近似一级反应动力学规律,反应速率常数为4.8×1-0 3-s 1.  相似文献   

8.
微波辐射Fenton氧化处理络合铜废水研究   总被引:2,自引:0,他引:2  
以络合铜生产废水为研究对象,考察了H2O2投加量、FeSO4投加量、pH值、微波辐射时间、微波辐射功率等因素对微波辐射Fenton氧化法去除污染物效果的影响.分析了最优条件下单独微波、单独Fenton以及两者联用对CODCr和Cu2+的去除作用,初步探索了各影响因子的作用效果和综合反应机理.结果表明,通过单因素实验优化微波辐射Fenton氧化处理络合铜生产废水的最佳工艺条件为:30%H2O2用量为130 mL/L、FeSO4.7H2O用量为5 g/L、pH值为3.5、微波功率680 W、微波辐射时间10 min.在此条件下,微波结合Fenton氧化使CODCr和Cu2+分别由14 750 mg/L、968 mg/L下降到1 327 mg/L、55 mg/L,单独微波下降到11 563 mg/L、681 mg/L,单独Fenton氧化下降到2 537 mg/L、99 mg/L.  相似文献   

9.
目的研究H2O2与Fe2+的物质的量比、H2O2投加量、pH值、微波辐照功率和辐照时间对高质量浓度制药废水的处理的影响.方法以阜新某集团公司生产制药原料排出的废水为对象,将Fenton技术衍生,设计Fenton/微波工艺,进行静态试验.结果当H2O2与Fe2+的物质的量比、H2O2投加量、pH值、微波辐照功率和辐照时间改变时,出水COD都有很大改变.当试验用水为100 mL的制药废水时,H2O2与Fe2+的物质的量比50∶1,H2O2投加量为Qth,pH值为3,微波辐照功率为500 W,辐照时间为9 min时,COD去除率最大,可达到83.1%,出水COD在97.3~243.4 mg/L范围内.结论 Fenton/微波联合工艺作为一种Fenton技术衍生而来的工艺,虽不能使高质量浓度制药废水达到排放标准,但是可以氧化不易降解的有机物,降低后续工艺的处理难度.  相似文献   

10.
微波和微波Fenton组合法处理渗滤液的对比   总被引:17,自引:0,他引:17  
利用高级氧化技术能将废水中的有机物氧化分解为小分子的碳氢化合物或将有机物完全矿化为CO2和H2O。利用微波辐射和Fenton法组合处理垃圾渗滤液,以探索微波Fenton法连续流处理垃圾渗滤液的可行性。实验对比研究了微波辐射、微波辐射与Fenton组合方法处理垃圾渗滤液的可行性。实验研究表明,垃圾渗滤液在微波功率为600 W,作用时间为4 min下的COD去除率可达到20%。而经过微波辐射处理后的垃圾渗滤液,再加入Fenton试剂,在FeSO4的浓度为15 mmol/L,H2O2的浓度为60 mmol/L,pH为5,反应时间为30 min的条件下,COD去除率可达到72%。  相似文献   

11.
竹炭吸附-微波辐射法去除糖蜜酒精废水中的COD   总被引:2,自引:1,他引:1  
试验研究了竹炭类型、粒径、投加量、微波辐射功率与时间等因素对竹炭吸附-微波辐射法去除糖蜜酒精废水中COD效果的影响。结果表明:高温竹炭的吸附效果优于中温竹炭;竹炭粒径越小,废水COD去除效果越好;废水COD去除率随着微波辐射时间与功率的增大而增加;废水的初始COD浓度越大,COD去除率越大。正交试验表明(废水用量50mL、COD初始浓度为540mg/L):在振荡时间45min、竹炭投加量0.5g、微波功率600W、辐射时间4min时处理的效果最好,此时COD去除率可达84.98%。  相似文献   

12.
以-γAl2O3为载体,采用浸渍法制备了负载Cu基催化剂,将其应用于微波诱导催化氧化处理模拟甲基橙废水。XRD表征及实验结果表明,在200℃下焙烧得到的碱式硝酸铜比氧化铜具有更高的催化活性。对于25 mL质量浓度为50 mg·L-1的模拟甲基橙废水,最佳的处理工艺条件为:微波辐照功率700 W,辐照时间7 min,催化剂加入量0.3 g,H2O2加入量2 mL。在此工艺条件下,水中甲基橙的脱除率达98.7%。催化剂连续使用5次后甲基橙脱除率仍达98%以上。  相似文献   

13.
采用微波Fenton耦合超声催化内电解工艺处理垃圾压缩废水.考察了微波升温速率、Fen-ton试剂投加量、超声功率、超声时间、Fe/Cu/沸石质量比、曝气量及回流比等因素对水样COD和色度去除率的影响.结果表明,保持水样pH不变,H2O2与FeSO4投加量分别为117.6mmol/L、23.4mmol/L,在170W功率下辐射100s,升温速率为12.0℃/min,COD和色度去除率分别达到了27.14%和74.15%.调节水样pH为3.0,超声功率80W,Fe-Cu-沸石质量比为6∶3∶2,在曝气量为0.2L/min下反应90min,COD和色度去除率分别为42.38%和82.60%.在回流比为0.8下,耦合工艺出水水质稳定,COD去除率均在55%以上,最高达到62.81%;色度去除率均大于83%,最高达到94.7%.  相似文献   

14.
针对实验室废水,采用活性碳联合Fenton试剂氧化处理,探讨主要因素对COD处理效果的影响.实验结果表明,活性碳在添加量为0.45 g/mL,反应30 min后对废水中COD的去除率达61.32%;Fenton试剂在H2O2添加量为0.07 mg/mL,FeSO4·7H2O的添加量为0.02 g/mL的条件下反应60 min后,对废水中COD的去除率达到59.88%;将活性碳吸附和Fenton试剂联合作用后,活性碳添加量减少了0.05 g/mL,FeSO4·7H2O添加量减少了0.005 g/mL,去除率可达89.23%,显著提高实验室废水中COD的去除率.  相似文献   

15.
采用铁碳微电解和Fenton法联合工艺处理实际印染废水,研究pH、反应时间、Fe/C体积比、H2O2浓度对实际印染废水脱色率及COD去除率的影响规律,并优化了联合技术的最佳工艺条件.试验结果表明:在短期时间内,Fe/C体积比和H2O2浓度对废水的处理效果影响最显著,最佳工艺条件为进水pH=4,Fe/C体积比为1∶1,H2O2的投加量20ml/L,反应时间30min,COD的去除率可以达到97%以上,色度的去除率达到99%以上.  相似文献   

16.
三相流化床中微波诱导氧化处理含酚废水研究   总被引:10,自引:0,他引:10  
针对目前微波诱导氧化工艺不能连续运行的问题,研究开发了采用三相流化床反应器的微波诱导氧化处理含酚废水的设备和工艺,实现了微波诱导催化氧化工艺的连续运行.以活性炭为催化剂,考查了各种实验条件对该工艺处理效果的影响,获得了最佳的工艺操作条件:以25g粒径<0.9mm的颗粒活性炭为催化剂,进水流量为2 5L/h,进水pH在酸性或中性,苯酚质量浓度在100mg/L左右,曝气量为3 74L/h,微波功率为150W.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号