首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Stochastic discrete event systems (SDES) are systems whose evolution is described by the occurrence of a sequence of events, where each event has a defined probability of occurring from each state. The diagnosability problem for SDES is the problem of determining the conditions under which occurrences of a fault can be detected in finite time with arbitrarily high probability. (IEEE Trans Autom Control 50(4):476–492 2005) proposed a class of SDES and proposed two definitions of stochastic diagnosability for SDES called A- and A A-diagnosability and reported a necessary and sufficient condition for A-diagnosability, but only a sufficient condition for A A-diagnosability. In this paper, we provide a condition that is both necessary and sufficient for determining whether or not an SDES is A A-diagnosable. We also show that verification of A A-diagnosability is equivalent to verification of the termination of the cumulative sum (CUSUM) procedure for hidden Markov models, and that, for a specific class of SDES called fault-immediate systems, the sequential probability ratio test (SPRT) minimizes the expected number of observable events required to distinguish between the normal and faulty modes.  相似文献   

2.
We consider the scheduling problem in which two agents (agents A and B), each having its own job set (containing the A-jobs and B-jobs, respectively), compete to process their own jobs in a two-machine flowshop. Each agent wants to maximize a certain criterion depending on the completion times of its jobs only. Specifically, agent A desires to maximize either the weighted number of just-in-time (JIT) A-jobs that are completed exactly on their due dates or the maximum weight of the JIT A-jobs, while agent B wishes to maximize the weighted number of JIT B-jobs. Evidently four optimization problems can be formulated by treating the two agents’ criteria as objectives and constraints of the corresponding optimization problems. We focus on the problem of finding the Pareto-optimal schedules and present a bicriterion analysis of the problem. Solving this problem also solves the other three problems of bicriterion scheduling as a by-product. We show that the problems under consideration are either polynomially or pseudo-polynomially solvable. In addition, for each pseudo-polynomial-time solution algorithm, we show how to convert it into a two-dimensional fully polynomial-time approximation scheme for determining an approximate Pareto-optimal schedule. Finally, we conduct extensive numerical studies to evaluate the performance of the proposed algorithms.  相似文献   

3.
In the Fixed Cost k-Flow problem, we are given a graph G = (V, E) with edge-capacities {u e eE} and edge-costs {c e eE}, source-sink pair s, tV, and an integer k. The goal is to find a minimum cost subgraph H of G such that the minimum capacity of an st-cut in H is at least k. By an approximation-preserving reduction from Group Steiner Tree problem to Fixed Cost k-Flow, we obtain the first polylogarithmic lower bound for the problem; this also implies the first non-constant lower bounds for the Capacitated Steiner Network and Capacitated Multicommodity Flow problems. We then consider two special cases of Fixed Cost k-Flow. In the Bipartite Fixed-Cost k-Flow problem, we are given a bipartite graph G = (AB, E) and an integer k > 0. The goal is to find a node subset S ? AB of minimum size |S| such G has k pairwise edge-disjoint paths between SA and SB. We give an \(O(\sqrt {k\log k})\) approximation for this problem. We also show that we can compute a solution of optimum size with Ω(k/polylog(n)) paths, where n = |A| + |B|. In the Generalized-P2P problem we are given an undirected graph G = (V, E) with edge-costs and integer charges {b v : vV}. The goal is to find a minimum-cost spanning subgraph H of G such that every connected component of H has non-negative charge. This problem originated in a practical project for shift design [11]. Besides that, it generalizes many problems such as Steiner Forest, k-Steiner Tree, and Point to Point Connection. We give a logarithmic approximation algorithm for this problem. Finally, we consider a related problem called Connected Rent or Buy Multicommodity Flow and give a log3+?? n approximation scheme for it using Group Steiner Tree techniques.  相似文献   

4.
Using a graphical presentation of the spin S one-dimensional Valence Bond Solid (VBS) state, based on the representation theory of the \({\textit{SU}}(2)\) Lie algebra of spins, we compute the spectrum of a mixed-state reduced density matrix. This mixed state of two blocks of spins A and B is obtained by tracing out the spins outside A and B, in the pure VBS state density matrix. We find in particular that the negativity of the mixed state is nonzero only for adjacent subsystems. The method introduced here can be generalized to the computation of entanglement properties in Levin–Wen models, that possess a similar algebraic structure to the VBS state in the ground state.  相似文献   

5.
For the interval system of equations defined by [x] = [A][x] + [b] we derive necessary and sufficient criteria for the existence of solutions [x]. Furthermore we give necessary and sufficient criteria for the convergence of powers of [A]. In contrast to former results we treat complex interval arithmetics.  相似文献   

6.
We consider two quantities that measure complexity of binary strings: KM(x) is defined as the negative logarithm of continuous a priori probability on the binary tree, and K(x) denotes prefix complexity of a binary string x. In this paper we answer a question posed by Joseph Miller and prove that there exists an infinite binary sequence ω such that the sum of 2KM(x)?K(x) over all prefixes x of ω is infinite. Such a sequence can be chosen among characteristic sequences of computably enumerable sets.  相似文献   

7.
As was shown earlier, for a linear differential–algebraic system A 1 y′ + A 0 y = 0 with a selected part of unknowns (entries of a column vector y), it is possible to construct a differential system ?′ = B ?, where the column vector ? is formed by some entries of y, and a linear algebraic system by means of which the selected entries that are not contained in ? can be expressed in terms of the selected entries included in ?. In the paper, sizes of the differential and algebraic systems obtained are studied. Conditions are established under the fulfillment of which the size of the algebraic system is determined unambiguously and the size of the differential system is minimal.  相似文献   

8.
How is fuzzy logic usually formalized? There are many seemingly reasonable requirements that a logic should satisfy: e.g., since A B and B A are the same, the corresponding and-operation should be commutative. Similarly, since A A means the same as A, we should expect that the and-operation should also satisfy this property, etc. It turns out to be impossible to satisfy all these seemingly natural requirements, so usually, some requirements are picked as absolutely true (like commutativity or associativity), and others are ignored if they contradict to the picked ones. This idea leads to a neat mathematical theory, but the analysis of real-life expert reasoning shows that all the requirements are only approximately satisfied. we should require all of these requirements to be satisfied to some extent. In this paper, we show the preliminary results of analyzing such operations. In particular, we show that non-associative operations explain the empirical 7±2 law in psychology according to which a person can normally distinguish between no more than 7 plus minus 2 classes.  相似文献   

9.
In this paper, we provide a proof of unconditional security for a semi-quantum key distribution protocol introduced in a previous work. This particular protocol demonstrated the possibility of using X basis states to contribute to the raw key of the two users (as opposed to using only direct measurement results) even though a semi-quantum participant cannot directly manipulate such states. In this work, we provide a complete proof of security by deriving a lower bound of the protocol’s key rate in the asymptotic scenario. Using this bound, we are able to find an error threshold value such that for all error rates less than this threshold, it is guaranteed that A and B may distill a secure secret key; for error rates larger than this threshold, A and B should abort. We demonstrate that this error threshold compares favorably to several fully quantum protocols. We also comment on some interesting observations about the behavior of this protocol under certain noise scenarios.  相似文献   

10.
Uncertainty principle significantly provides a bound to predict precision of measurement with regard to any two incompatible observables, and thereby plays a nontrivial role in quantum precision measurement. In this work, we observe the dynamical features of the quantum-memory-assisted entropic uncertainty relations (EUR) for a pair of incompatible measurements in an open system characterized by local generalized amplitude damping (GAD) noises. Herein, we derive the dynamical evolution of the entropic uncertainty with respect to the measurement affecting by the canonical GAD noises when particle A is initially entangled with quantum memory B. Specifically, we examine the dynamics of EUR in the frame of three realistic scenarios: one case is that particle A is affected by environmental noise (GAD) while particle B as quantum memory is free from any noises, another case is that particle B is affected by the external noise while particle A is not, and the last case is that both of the particles suffer from the noises. By analytical methods, it turns out that the uncertainty is not full dependent of quantum correlation evolution of the composite system consisting of A and B, but the minimal conditional entropy of the measured subsystem. Furthermore, we present a possible physical interpretation for the behavior of the uncertainty evolution by means of the mixedness of the observed system; we argue that the uncertainty might be dramatically correlated with the systematic mixedness. Furthermore, we put forward a simple and effective strategy to reduce the measuring uncertainty of interest upon quantum partially collapsed measurement. Therefore, our explorations might offer an insight into the dynamics of the entropic uncertainty relation in a realistic system, and be of importance to quantum precision measurement during quantum information processing.  相似文献   

11.
The solvability conditions and just the solution of the problem of the regular and irregular proportional-integral (PI) control are found in accordance with the properties of invariant zeros of a multi-input multioutput (MIMO) system. It is proved that the problem of synthesizing the control of the MIMO system is solvable if and only if the pair of matrices (A, B) that describes a control plant is controllable and the matrix BLACR (where BL is the left zero divisor of the matrix B and CR is the right zero divisor of the output matrix C) has a complete row rank.  相似文献   

12.
B-matrices form a subclass of P-matrices for which error bounds for the linear complementarity problem are known. It is proved that a bound involved in such problems is asymptotically optimal. \(B_\pi ^R\)-matrices form a subclass of P-matrices containing B-matrices. For the \(B_\pi ^R\)-matrices, error bounds for the linear complementarity problem are obtained. We also include illustrative examples showing the sharpness of these bounds.  相似文献   

13.
The performance of a linear error-detecting code in a symmetric memoryless channel is characterized by its probability of undetected error, which is a function of the channel symbol error probability, involving basic parameters of a code and its weight distribution. However, the code weight distribution is known for relatively few codes since its computation is an NP-hard problem. It should therefore be useful to have criteria for properness and goodness in error detection that do not involve the code weight distribution. In this work we give two such criteria. We show that a binary linear code C of length n and its dual code C of minimum code distance d are proper for error detection whenever d ≥ ?n/2? + 1, and that C is proper in the interval [(n + 1 ? 2d)/(n ? d); 1/2] whenever ?n/3? + 1 ≤ d ≤ ?n/2?. We also provide examples, mostly of Griesmer codes and their duals, that satisfy the above conditions.  相似文献   

14.
We develop a cache-oblivious data structure for storing a set S of N axis-aligned rectangles in the plane, such that all rectangles in S intersecting a query rectangle or point can be found efficiently. Our structure is an axis-aligned bounding-box hierarchy and as such it is the first cache-oblivious R-tree with provable performance guarantees. If no point in the plane is contained in more than a constant number of rectangles in S, we can construct, for any constant ε, a structure that answers a rectangle query using \(O(\sqrt{N/B}+T/B)\) memory transfers and a point query using O((N/B) ε ) memory transfers, where T is the number of reported rectangles and B is the block size of memory transfers between any two levels of a multilevel memory hierarchy. We also develop a variant of our structure that achieves the same performance on input sets with arbitrary overlap among the rectangles. The rectangle query bound matches the bound of the best known linear-space cache-aware structure.  相似文献   

15.
This paper proposes a strengthening of the author’s core-accessibility theorem for balanced TU-cooperative games. The obtained strengthening relaxes the influence of the nontransitivity of classical domination αv on the quality of the sequential improvement of dominated imputations in a game v. More specifically, we establish the k-accessibility of the core C v ) of any balanced TU-cooperative game v for all natural numbers k: for each dominated imputation x, there exists a converging sequence of imputations x0, x1,..., such that x0 = x, lim x r C v ) and xr?m is dominated by any successive imputation x r with m ∈ [1, k] and rm. For showing that the TU-property is essential to provide the k-accessibility of the core, we give an example of an NTU-cooperative game G with a ”black hole” representing a nonempty closed subset B ? G(N) of dominated imputations that contains all the α G -monotonic sequential improvement trajectories originating at any point xB.  相似文献   

16.
A flow-shop batching problem with consistent batches is considered in which the processing times of all jobs on each machine are equal to p and all batch set-up times are equal to s. In such a problem, one has to partition the set of jobs into batches and to schedule the batches on each machine. The processing time of a batch B i is the sum of processing times of operations in B i and the earliest start of B i on a machine is the finishing time of B i on the previous machine plus the set-up time s. Cheng et al. (Naval Research Logistics 47:128–144, 2000) provided an O(n) pseudopolynomial-time algorithm for solving the special case of the problem with two machines. Mosheiov and Oron (European Journal of Operational Research 161:285–291, 2005) developed an algorithm of the same time complexity for the general case with more than two machines. Ng and Kovalyov (Journal of Scheduling 10:353–364, 2007) improved the pseudopolynomial complexity to \(O(\sqrt{n})\). In this paper, we provide a polynomial-time algorithm of time complexity O(log?3 n).  相似文献   

17.
Existing spatiotemporal indexes suffer from either large update cost or poor query performance, except for the B x -tree (the state-of-the-art), which consists of multiple B +-trees indexing the 1D values transformed from the (multi-dimensional) moving objects based on a space filling curve (Hilbert, in particular). This curve, however, does not consider object velocities, and as a result, query processing with a B x -tree retrieves a large number of false hits, which seriously compromises its efficiency. It is natural to wonder “can we obtain better performance by capturing also the velocity information, using a Hilbert curve of a higher dimensionality?”. This paper provides a positive answer by developing the B dual -tree, a novel spatiotemporal access method leveraging pure relational methodology. We show, with theoretical evidence, that the B dual -tree indeed outperforms the B x -tree in most circum- stances. Furthermore, our technique can effectively answer progressive spatiotemporal queries, which are poorly supported by B x -trees.  相似文献   

18.
Learning from data that are too big to fit into memory poses great challenges to currently available learning approaches. Averaged n-Dependence Estimators (AnDE) allows for a flexible learning from out-of-core data, by varying the value of n (number of super parents). Hence, AnDE is especially appropriate for learning from large quantities of data. Memory requirement in AnDE, however, increases combinatorially with the number of attributes and the parameter n. In large data learning, number of attributes is often large and we also expect high n to achieve low-bias classification. In order to achieve the lower bias of AnDE with higher n but with less memory requirement, we propose a memory constrained selective AnDE algorithm, in which two passes of learning through training examples are involved. The first pass performs attribute selection on super parents according to available memory, whereas the second one learns an AnDE model with parents only on the selected attributes. Extensive experiments show that the new selective AnDE has considerably lower bias and prediction error relative to A\(n'\)DE, where \(n' = n-1\), while maintaining the same space complexity and similar time complexity. The proposed algorithm works well on categorical data. Numerical data sets need to be discretized first.  相似文献   

19.
Given a simple undirected graph G = (V, E) and an integer k < |V|, the Sparsest k-Subgraph problem asks for a set of k vertices which induces the minimum number of edges. As a generalization of the classical independent set problem, Sparsest k-Subgraph is ????-hard and even not approximable unless ?????? in general graphs. Thus, we investigate Sparsest k-Subgraph in graph classes where independent set is polynomial-time solvable, such as subclasses of perfect graphs. Our two main results are the ????-hardness of Sparsest k-Subgraph on chordal graphs, and a greedy 2-approximation algorithm. Finally, we also show how to derive a P T A S for Sparsest k-Subgraph on proper interval graphs.  相似文献   

20.
The classical-input quantum-output (cq) wiretap channel is a communication model involving a classical sender X, a legitimate quantum receiver B, and a quantum eavesdropper E. The goal of a private communication protocol that uses such a channel is for the sender X to transmit a message in such a way that the legitimate receiver B can decode it reliably, while the eavesdropper E learns essentially nothing about which message was transmitted. The \(\varepsilon \)-one-shot private capacity of a cq wiretap channel is equal to the maximum number of bits that can be transmitted over the channel, such that the privacy error is no larger than \(\varepsilon \in (0,1)\). The present paper provides a lower bound on the \(\varepsilon \)-one-shot private classical capacity, by exploiting the recently developed techniques of Anshu, Devabathini, Jain, and Warsi, called position-based coding and convex splitting. The lower bound is equal to a difference of the hypothesis testing mutual information between X and B and the “alternate” smooth max-information between X and E. The one-shot lower bound then leads to a non-trivial lower bound on the second-order coding rate for private classical communication over a memoryless cq wiretap channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号